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PREFACE.

The design of the authors in the preparation of this work
lias been to present the fundamental principles of Physics, the

experimental basis upon which they rest, and, so far as possible,

'the methods by which they have been estabhshed. Illustra-

tions of these principles by detailed descriptions of special

methods of experimentation and of devices necessary for their

applications in the arts have been purposely omitted. The
authors believe that such illustrations should be left to the lec-

turer,' who, in the performance of his duty, will naturally be

.guided by considerations respecting the wants of his classes

and the resources of his cabinet.

Pictorial representations of apparatus, which ,can seldom be

•employed with advantage unless accompanied with full and ex-

act descriptions, have been discarded, and only such simple

diagrams have been introduced into the text as seem suited

to aid in the demonstrations. By adhering to this plan

.greater economy of space has been secured than would other-

wise have been possible, and thus the work has been kept

-within reasonable limits.

A few demonstrations have been given which are not usually
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found in elementary text-books, except those which are much

more extended in their scope than the present work. This has

been done in every case in order that the argument to which

the demonstration pertains may be complete and that the stu-

dent may be convinced of its validity.

In the discussions the method of limits has been recognized

wherever it is naturally involved ; the special methods of the

calculus, however, have not been employed, since, in most insti-

tutions in this country, the study of Physics is commenced before

the student is sufficiently familiar with them.

The authors desire to acknowledge their obligations to Wm.
F. Magie, Assistant Professor of Physics in the College of New
Jersey, who has prepared a large portion of the manuscript and

has aided in the final revision of all of it, as well as in reading

the proof-sheets.

W. A. Anthony,

C. F. Brackett.

September, 1887.
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INTRODUCTION.

I. Divisions of Natural Science.—Everything which can
affect our senses we call matter. Any limited portion of mat-
ter, however great or small, is called a body. All bodies, to-

gether with their unceasing changes, constitute Nature.
Natural Science makes us acquainted wifh the properties

of bodies, and with the changes, or phenomena, which result

from their mutual actions. It is therefore conveniently divided
into two principal sections,

—

Natural History and Natural
Philosophy.

The former describes natural objects, classifies them accord-

ing to their resemblances, and, by the aid of Natural Philoso^

phy, points out the laws of their production and development.

The latter is concerned with the laws which are exhibited in

the mutual action of bodies on each other.

These mutual actions are _of two kinds : those which leave

the essential properties of bodies unaltered, and those which

effect a complete change of properties, resulting in 'loss of

identity. Changes of the first kind are called physical changes

;

those of tiie second kind are called chemical changes. Nat-

ural Philosophy has, therefore, two subdivisions,

—

Physics and

Chemistry.

Physics deals with all those phenomena of matter which are

ncit directly related to chemical changes. Astronomy is thus a

branch of Physics, yet it is usually excluded from works like

the present on account of its special character.
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It is not possible, however, to draw sharp lines of demarca-

tion between the various departments of Naitural Science, for

the successful pursuit of knowledge in any one of them re-

quires some acquaintance with the others.

2. Methods.—The ultimate basis of all our knowledge of

nature is experience,^—experience resulting from the action of

bodies on our senses, and the consequent affections of our

minds.

' When a natural phenomenon arrests our attention, we call

the result, an observation. Simple observations of natural phe-

nomena only in rare instances can lead to such complete

knowledge as will sufifice for a full understanding of them. An
observation is the more complete, the more fully we appre-

hend the attending circumstances. We are generally not cer-

tain that all the circumstances vy^hich we note are conditions on
which the phenomenon, in a given case, depends. In such

cases we modify or suppress one of the circumstances, and ob-

serve the effect on the phenomenon. If we find a correspondr

ing modification or failure with respect to the phenomenon,
we conclude that the circumstance, so modified, is a condition.

We may proceed in the same way with each of the remaining
circumstances, leaving all unchanged except the single one
purposely modified at each trial, and always observing the ef-

fect of the modification. We thus determine the conditions

on which the phenomenon depends. In other words, we bring

experintent to our aid in distinguishing between the real condi-

tions on which a phenomenon depends, and the merely acci-

dental circumstances which may attend it.

But this is not the only use of experiment. By its aid we
may frequently modify some of the conditions, known to be
conditions, in such ways that the phenomenon is not arrested,

but so altered in the rate with which its details pass before us
that they may be easily observed. Experiment also often

leads to new phenomena, and to a knowledge , of activities be-
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fore unobserved. Indeed, by far the greater part of our knowl-

edge of natural phenomena has been acquired by means of ex-

periment. To be of value, experiments must be conducted

with system, and so a? to trace out the whole course of the

phenomenon.
Having acquired our facts by observation and experiment,

we seek to find out how they are related ; that is, to discover

the /awj which connect them. The process of reasoning,by
which we discover such laws ,is called induction. As we can

seldom be sure that ^ve have apprehended all the related fac^s,

it is clear that our inductions must generally be incomplete.

Hence it follows that conclusions reached in this way are at

best only probable
;
yet their probability becomes very great

when we can discover no outstanding fact, and especially so

when, regarded provisionally as true, they enable us to predict

phenomena before unknown.

In conducting our experiments, and in reasoning upon them,

we are often guided by suppositions suggested by previous

experience. If the course of our experiment be in accordance

with our supposition, th^re is, so far, a presumption in its favor.

So, too, in reference to our reasonings : if all our facts are seen

to be consistent with some supposition not unlikely in itself,

we say it thereby becomes probable. The term hypothesis is

usually employed instead of supposition.

Concerning the ultimate modes of existence or action, we

know nothing whatever ; hence, a law of nature cannot be

demonstrated in the sense that a mathematical truth is demon-

strated. Yet so great is the constancy of uniform sequence

with which phenomena occur in accordance with the laws

which we discover, that we have no doubt respecting their

validity.

When we would refer ^ series of ascertaifted laws to some

common agency, we employ the term theory. Thus we find in

the " wave theory" of hght, based on the hypothesis of a uni-



4 ELEMENTARY PHYSICS. [3

versal ether of extreme elasticity, satisfactory explanations of

the laws of reflection, refraction, diffraction, polarization, etc.

3. Measurements.—All the phenomena of nature occur in

matter, and are presented to us in time and space.

Time and space are fundamental conceptions : they do not

admit of definition. Matter is equally indefinable : its distinc-

tive characteristic is its persistence in whatever state of rest or

motion it may happen to have, and the resistance which it of-

fers to any attempt to change that state. This property is

called inertia. It must be carefully distinguished from inac-

tivity.

Another essential property of matter is impenetrability, or

the property of occupying space to the exclusion of other

matter.

We are almost constantly obliged, in physical science, to

measure the quantities with which we deal. We measure

a quantity when we compare it with some standard of the

same kind. A simple number expresses the result of the com-

parison.

If we adopt arbitrary units of length, time, and mass (or

quantity of matter), we can express the measure of all other

quantities in terms of these so-called fundamental units. A
unit of -any other quantity, thus expressed, is called a derived

unit.

It is convenient, in defining the measure of derived units, to

speak of the ratio between, or the product of, two dissimilar

quantities, such as space and time. This must always be un-

derstood to mean the ratio between, or the product of, the

numbers expressing those quantities in the fundamental units.

The result of taking such a ratio or product of two dissimilar

quantities is a number expressing a third quantity in terms of

a derived unit. ,

4. Unit of Length.—The unit of length usually adopted in

scientific work is the centimetre. It is the one hundredth part
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of the length of a certain piece of platinum, declared to be a

standard by legislative act, and preserved in the archives, of

France. This standard, called the metre, was designed to be

equal in length to one ten-millionth of the earth's quadrant.

The operation of comparing a length with the standard

is often difificult of direct accomplishment. This may arise

from the minuteness of the object or distance to be measured,

from the distant point at which the measurement is to end

being inaccessible, or from the difficulty of accurately dividing

our standard into very small fractional parts. In all such cases

we have recourse to indirect methods, by which the difficulties

are more or less completely obviated.

The verniei" enables us to estimate small fractions of the

unit of length with great convenience and accuracy. It con-

sists of an accessory piece, fitted to slide on the principal scale

of the instrument to which it is applied. A portion of the ac-

cessory piece, equal to n minus one or n plus one divisions of

the principal scale, is divided into n divisions.

In the former case, the divisions are numbere,d

in the same sense as those of the principal scale

;

in the latter, they are numbered in the' opposite

sense. In either case we can measure a quan-

tity accurately to the one «th part of one of the

primary divisions of the principal scale. Fig. i

will make the construction and use of the ver-

nier" plain.

In Fig. I, let o, i, 2, 3 . . . lo be the di-

visions on the vernier; let o, i, 2, 3 ... 10

be any set of consecutive divisions on the

principal scale.

If we suppose the o of the vernier to be in

coincidence with the limiting point of the mag- fig. ..

nitude to be measured, it is clear that, from the position

shown in the figure, we have 29.7, expressing that magnitude
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to the nearest tenth ; and since the sixth division of the vej-

'

nier coincides with a whole division of the principal scale, we
have -j^ of -^j or -j-^, of a principd division to be added;

hence the whole value is 29.76.

The micrometer screw is also much employed. It consists

of a carefully cut screw, accurately fitting in a nut. The
head of the screw carries a graduated circle, which can turn

past a fixed point. This is frequently the zero point of a scale

with divisions equal in magnitude to the pitch of the screw.

These divisions will then show through how many revolutions

the screw is turned in any given trial ; while the divisions on

the graduated circle will show the fractional part of a revolu-

<3i tion, and consequently the frac-

tional part of the pitch that must
be added. If the screw be turned

through n revolutioijs, as shown by
the scale, and through an additional

fraction, as shown by, the divided

circle, it will pass throiigh n times

the pitch of the screw, and an ad-

ditional fraction of the pitch deter-

mined by the ratio of the number
of divisions read from o on the di-

vided circle to the whole .number

into which it is divided.

The cathetometer ^s used for

measuring differences of level. A
graduated scale is cut on an up-

right bar, which can turn about a

vertical axis. Over this bar slide

' two accurately fitting pieces, one

of which can be clamped to the bar

at any point, and serve as the fixed bearing of a micrometer

screw. The screw runs in a nut in the second piece, which has

Fig. 3.
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a vernier attached, and carries a horizontal telescope furnished

with cross-hairs. The telescope having been made accurately

horizontal by means of a delicate level, the cross-hairs are

made to cover one of the two points, the difference of level be-

tween which is sought, and the reading upon the scale is taken
;

the fixed piece is then uncla,niped, and the telescope raised or

lowered until the second point is covered by the cross-hairs,

and the scale reading is again taken. The difference of scale

reading is the difference of level sought.

The dividing engine may be used for dividing scales or for

Fig. 3.

comparing lengths. In its usual form it consists essentially

of a long micrometer screw, carrying a table, which slides,

with a motion accurately parallel with itself, along fixed

guides, resting on a firm support. To this table is fixed an

apparatus for making successive cuts upon the object to be

graduated.

The object to be graduated is fastened to the fixed sup-

port. The table is carried along through any required dis-
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tance determined by the motion of the screw, and the cuts

can be thus made at the proper intervals.

The same instrument, furnished with microscopes and ac-

cessories, may be employed for comparing lengths with a'

standard.. It may then be called a comparator.

The spherometer is a special form of the micrometer screw.

As its name implies, it is primarily used for measuring the cur-

vature of spherical surfaces.

It consists of a screw with a large head, divided into a

great number of parts, turning in a nut supported on three

legs terminating in points, which form the vertices of an equi-

lateral triangle. The axis of revolution of the screw is per-

pendicular to the plane of the triangle, and passes through its

centre. The screw ends in a point which may be brought

into the same plane with the points

of the legs. This is done by plac-

ing the legs on a truly plane sur-

face, and turning the screw till its '

point is just in contact with the sur-

face. The sense of touch will en-

able one to decide with great nicety

when the screw is turn«d far enough.

If, now, we note the reading of the

divided scale, and also that of the

divided head, and then raise the

screw, by turning it backward, so
that the given curved surface may exactly coincide with the
four points, we can compute the radius of curvature from the
diilerence of the two readings and the known length of the
side of the triangle formed by the points of the tripod.

5. Unit of Time.—The unit of time is the mean time
second, which is the gg^oa of a mean solar day. We employ
the clock, regulated by the pendulum or the chronometer
balance, to indicate seconds. The clock, while suilSciently ac-

FlG.
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curate for ordinary use, must for exact investigations be frcr

quently corrected by astronomical observations.

Smaller intervals of time than the second are measured by
causing some vibrating body, as a tuning-fork, to trace its

path along some suitable surface, on which also are recorded

the beginning and end of the interval of time to be measured.

The number of vibrations traced while the event is occurring

determines its duration in known parts of a second.

In estimating the duration of certain phenomena giving rise

to light, the revolving mirror may be employed. By its use,

with proper accessories, intervals as small as forty billionths of

a second have been estimated.

6. Unit of Mass.—The unit of mass usually adopted in

scientific work is the gram. It is equal to the one thousandth

part of a certain piece of platinum, called the kilogram, pre-

served as a standard in the archives of France. This standard

was intended to be equal in mass to one cubic decimetre of

water at its greatest density.

Masses are compared by means of the balance, the con-

struction of which will be discussed hereafter.

7. Measuremeat of Angles.—Angles are usually measured

by reference to a divided circle graduated on the system of

division upon which the ordinary trigonometrical tables are

based. A pointer or an arm turns about the centre of the

circle, and the angle between two of its positions is measured

in degrees on the arc of the circle. For greater accuracy, the

readings may be made by the help of a vernier. To facilitate

the measurement of an angle subtended at the centre of the

circle by two distant -points, a telescope with cross-hairs is

mounted on the movable arm.

In theoretical discussions the unit of angle often adopted

is the radian, that is, the angle subtended by the arc of a

circle equal to its radius. In terms of this unit, a semi-circum-

ference equals it = 3. 141 592. The radian, measured in degrees,

is 57° 17' 44.8."
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8. Dimensions of Units.—Any derived unit may be repre-

sented by the product of certain powers of the symbols repre-

senting the fundamental units of length, mass, and time.

' Any equation showing what powers of the fundamental

units enter into the expression for the derived unit is called

its dimensional equation. In a dimensional equation time is

represented by T, length by L, and mass by M. To indicate

the dimensions of any quantity, the symbol representing that

quantity is enclosed in brackets.

For example, the unit of, area varies as the square of the

unit of length ; hence its dimensional equation is [area] = L'.

In like manner, the dimensional equation for volume is [vol.]

= L=.

9. Systems of Units.—The system of units adopted in

this book, and generally employed in scientific work, based

upon the centimetre, gram, and second, as fundamental units,

is called the centimetre-gram-second system or the C. G. S.

system. . A system based upon the foot, grain, and second was

formerly much used in England. One based upon the milli-

metre, milligram, and second is still sometimes used in Ger-

many.



MECHANICS.

CHAPTER I.

MECHANICS OF MASSES.

10. The general subject of motion is usually divided, in

extended treatises, into two topics,

—

Kinematics and Dy-
namics. In the first are developed, by purely mathematical

methods, the laws of motion fconsidered in the abstract, inde-

pendent of anj^ causes producing it, and of any substance in

which it inheres ; in the second these mathematical relations

are extended and applied, by the aid of a few inductions drawn

from universal experience, to the explanation of the motioris

of bodies, and the discussion of the interactions which are the

occasion of those motions.

For convenience, the subject of Dynamics is further divided

into Statics, which treats of forces as maintaining bodies in

equilibrium and at rest, and Kinetics, which treats of forces as

setting bodies in motion.

In this book it has been found more convenient to make
no formal distinction between the mathematical relations of

motion and the application of those relations to the study of

forces and the motions of bodies. The subject is so extensive

that only those fundamental principles and results will be pre-

sented which have direct application in subsequent parts of

the work.

11. Mass and Density.—In many cases it is convenient to

speak of the quantity of matter in a body as a whole. It is

then called the mass of the body. In case the matter is con-

tinuously distributed throughout the body, its mass is often
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•epresented by the help of the quantities of matter in its

elementary volumes. The density of any substance is defined

IS the hmit of the ratio of the quantity of matter in any volume

Bvithin the substance to that volume, when the volume is dimin-

shed indefinitely. In case the distribution of matter in the

Dody is uniform, its density may be measured by the quantity

if matter in unit volume.

Since density is measured by a mass divided by a volume,

:ts dimensions are ML ~
'.

12. Particle.—A body constituting a part of a material

system, and of dimensions such that tbey may be considered

infinitely small in comparison with the distances separating it

[rom all other parts of the system, is called 2i particle.

13. Motion.—The change in position of a ftiaterial particle

is called its' motion. It is recognized by a change in the config-

'iration of the system containing the displaced particle ; that

is, by a change in the relative positions of the particles making

jp the system. Any particle in the system may be taken as

;he fixed point of reference, and the motion of the others may
3e measured from it. Thus, for example, high-water mark on

:he shore may be taken as the fixed point in determining the

rise and fall of the tides ; or, the sun may be assumed to be at

rest in computing the orbital motions of the planets. We can

[lave no assurance that the particle which we assume as

axed is not really in motion as a part of some larger system
;

indeed, in alinost every case we know that it is thus in motion.

A.S it is impossible to conceive of a point in space recognizable

IS fixed and determined in position, our measurements of

motion must always be relative.

One important limitation of this statement must be made :

by proper experiments it is possible to determine the absolute

angular motion of a body rotating about an axis.

14. Path.—The moving particle must always describe a

:ontinuous line or path. In all investigations the path maybe
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represented by a diagram or model, or by reference to a set of

assumed co-ordinates.

15. Velocity.—The rate of motion of a particle is called

its velocity. If the particle move in a straight line, and de-

scribe equal spaces in any arbitrary equal times, its velocity is

constant. A constant velocity is measured by the ratio of tfie

space traversed by the particle to the time occupied in travers-

ing that space. 11 s^ and s represent the distances of the par-

ticle from a fixed point on its path at the instants /„ and t,

then its velocity is represented by

s — s„
'

^ = TZrf ' (0
°>

If the path of the particle be curved, or if the spaces described

by the particle in equal times be not equal, its velocity is varia-

ble. The path of a particle moving with a variable velocity

may he. approximately represented by a succession of very

small straight lines, which, if the real path be curved, will differ

in direction, along which the particle moves with constant

velocities which may differ in amount. The velocity in any
one of these straight lines is represented by the formula

s — s
V = -—T—r. As the interval of time t — t^ approaches zero,

t '0
-

each of the spaces s — s„ wi^ll become indefinitely small, and in

the limit the imaginary path will coincide with the real path.
s — s

The limit of the expression -

—

^ will represent the velocity of

the particle along the tangent to the path at the time t = t^,

or, as it is called, the velocity in the path. This limit is usually

expressed by -^.

The practical unit of velocityis the velocity of a body mov-

ing uniformly through one centimetre in one second.

The dimensions of velocity are LT~^.
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i6. Momentum.—^The momentum of a body is its quantity

of motion. This varies with its mass and its velocity jointly,

and is measured by their product. ThuSj for example, a body
weighing ten grams, and having a velocity of ten centimetres,

has the same momentum as a body weighing one gram, and

having a velocity of one hundred centimetres. The practical

unit of momentum is that of a gram of matter moving with

the unit velocity. The formula is

mv, (2)

where ih represents mass.

The dimensions of momentum are MLT~^.
17. Acceleration.—When the velocity of a particle varies,

its rate of change is called the acceleration of the particle.

Acceleration is either positive or negative, according as the

velocity increases or diminishes. If the path of the particle

be a straight Hne, and if equal changes in velocity occur in

equal times, its acceleration is constant. It is measured by the

ratio of the change in velocity to the time during which that

change occurs. If j/„ and v represent the velocities of the par-

ticle at the instants t^ and /, then its acceleration is represented

by

If the path of the particle be curved, or if the changes in

velocity in equal times be not equal, the acceleration is variable.

It can be easily shown, by a method similar to that used in the
discussion of variable velocity, that the limit of the expression

v — v„ dv ...

f _{ = ^ will represent the acceleration in the path at the

time t = t^. This acceleration is due to a change of velocity

in the path. It is not in all cases the total acceleration of the
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particle.! As. will be seen in § 36, a particle moviiig along d

:urve has an acceleration which is not due to a change of

velocity in the path. ,

The practical unit of acceleration is that of a particle^ the ve-

ocity of which changes by one unit of velocity in one second.

The dimensions of acceleration are L T~^.

The space s — J„ traversed by a particle itioving with a con-

stant acceleration f, during a time t — t„ is determined by

;onsidering that, since the acceleration is constant, the aver-

ige velocity for the time t — t„ multiplied by t — t„ will

represent the space traversed ; hence

.-.„ = ^X^-/,); (4)

Dr. since - = ^, we have, in another form,
2 2

s-s, = vst - o

+

m^ - t.r- ' (4)

Multiplying equations (3) and (4), we obtain

!;> = v: + 2f{s-s,). • .(5)

When the particle stairts from rest, v„ = o\ and if we take the

starting point as the origin from which to reckon s, and the

time of starting as the origin of time, then s^ — o, t^ = o, and;

equations (3), (4), and (5) become v —ft, s = ^ft^, and v^ — 2fs.

Formula (4) may also be' obtained by a geometrical con-

struction.

At the extremities of a line AB (Fig. 5), equal in length to

t — t„ erect perpendiculars A C and BD, proportional to the
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B. Therefore the diagonal AB of the parallelogram haying the

sides I/, and v^ fully represents the motion of a-^ relative to a^.

The line AB is called the resultant, of which the two lines v^

and v^ are the components.

This, proposition may now be ^stated generally. The result-

ant of any two simultaneous motions, represented by two lines

drawn from the point of reference, is found by completing the

parallelogram of which those lines are sides ; the diagonal drawn

from the point of reference represents the resultant motion.

The resultant of any number of motions may be found by

obtaining the resultant of any two of the given components,

by means of, the parallelogram as before shown, using this re-

sultant in combination with another component to obta,in a

new resultant, and proceeding in this way till all the compo-

nents have been used.

The same result is reached by laying off the components as

the consecutive sides of a polygon, when the line required to

complete the polygon is the resultant sought.

The components of a given motion in any two given direc-

tions may be obtained by drawing lines in the two directions

from one extremity of the Hne representing the motion, taken

as origin, and constructing upon those lines the parallelogram

of which the line representing the motion is the diagonal. The

sides drawn front the origin represent the component motions

in direction and amount.

A motion may be resolved in three directions not in the

same plane by drawing from the extremity of the line repre-

senting the motion, taken as origin, lines in the three given direc-

tions, and constructing upon those lines the parallelopiped of

whicfh the line representing the motion is the diagonal. The

sides of the parallelopiped drawn from the origin represent the

required components.

Motions are usually resolved along three rectangular axes

by means of the trigonometrical functions. Thus, if a be th^
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line representing the motion, and Q, 0, and ^ the angles which

it makes with the three axes, the components along those axes

are a cos 6, a cos 0, and a cos ip.

Two motions may be compounded by first resolving theni

along two rectangular axes in their plane, and obtaining the

resultant of the sums of their components along the axes. If

a and b (Fig. 7) represent motions, a
cos 0, b cos 6, a sin 0, b sin 6 are the

resolved components of a and b along

the axes.

Let a cos <(> -\- b cos 6 = X and
a sin <})-\-b smd = F; then the diago-

nal of the rectangle, of which X and

F.0. 7.
^ ^^^ sides, is R = {X^+ YJ ; or,

since the angle between the resultant

and the axis of X is known by Y—Xtan ip, it follows that

j^ X Y ^

~
coslb °^

siir?6'
^^ 's evident that this process may be

extended to any number of components in the same plane.
It is to be noted that the parallelogram law, though only

proved for motions, can be shown by similar methods to be
applicable to the resolution and composition of velocities and
accelerations.

19. Simple Harmonic Motion.—If a point move in a
circle with a constant velocity, the point of intersection of a
diameter and a perpendicular drav/n from the moving point to
this diameter will have a simple harmonic motion. Its velocity
at any instant will be the velocity in the circle resolved at that
instant parallel to the diameter." The radius of the circle is the
amplitude of the motion. The period is the time between any
two successive recurrences of a particular condition of the
moving-point. The position of a point executing a simple
harmonic inotion can be expressed in terms of the interval of
time which has elapsed since the point last passed through the
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middle of- its path in the positive direction. This interval of

time, when expressed as a fraction of the period, is the phase.

We further, define rotation in the positive direction as that

rotation in the circle which is contrary to the motion of the

hands of a clock, or counter-clockwise. Motion from left to

right in the diameter is also eapsidered positive. Displace-

ment to the right of the centre is positive, and to the left

negative.

If a point start from X (Fig. 8), the position of greatest

positive elongation, with a simple harmonic motion, its distance

s from O or its displacement at the end of the time t, during

which the point in the circle has

moved through the arc BX, is

OC = OB cos 0. Now, OB is

equal to OX, the amplitude,

, , ,
2nt

represented by a, and = —j^,

where T is the period ; hence

271

1

s — a cos -

(6)

To find the velocity at the

, Fig. 8. point C, we must resolve the ve-

locity of the point* moving in the circle into its components

parallel to the axes. The component at the point C along OX
2na

is V ^va. 4>; or, since V= —j^^

V =
2na . 2itt
—^=- sm

r' (;)

remembering that motion from right to left is considered

negative.
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In order to find the acceleration at the point C directed

towards 0, we must find the rate of change of the velocity at Q
given by Eq. (7). Since, if the point is moving with an accel-

eration, the velocity increases with the time, as the time in-

creases by a small increment At, the velocity also increases by

the increment Av. Eq. (7) then becomes

, . 2nd . ( 2itt
,
2nAt\

V -\- Av = -=r sm —=- A——;;— 1

2Tta I 27tt 27tAt
,

2Ttt . 2nAt\— Ism -Y cos — 1- cos -Y sm—=^j.

2nAt
As At approaches zero, cos —=.— approaches the limit unity,

, . 2nAt
, , , , . 2nAt , . ,

and sin —=— can be replaced by its arc „ ; making these

changes, and transposing,

Av ATt^a 2Ttt— — CC\^
' .\ At~ ' T^ T '

sJAv
But in the limit where these changes .are admissible, -j-

becomes --7-
; that is, the acceleration of the point. ''

Hence the acceleration sought is

47r'' 27tt

/= — 2^r«cos -^. (8)

This forniula shows that the acceleration in a simple har-

monic motion is proportional to the displacement. It is of the
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opposite sign from the displacement ; that is, accderation to

the right of O is negative, and to the left of O positive.

It is often necessary to reckon titne from some other posi

tion than that of greatest plositive elongation. In that case

the time required for the moving-point to reach its greatest

positive elongation from that position, or the angle described

by the corresponding point in the circumfereqce in that time, is

called the epoch of the new starting-point. In determining the

epoch, it is necessary to consider, not only the position, but

the direction of motion, of the moving-point at the instant

from which time is reckoned. Thus, if L, corresponding to

K in the circumference, be taken as the starting-point, the

epoch is the time required to describe the path LX. But if L
correspond to the; point ^' in the circumference, the motion

in the diameter is negative, and the epdch is the time ^required
^

for the moving-point to go from L through O to X' and back

\oX.
'

The epochs in the two cases, expressed in angle, are, in the

first, the angle measured by the arc KX ; and, in the second,

the angle measured by the arc K'X'KX.
Choosing K in the circle, or L in the diameter, as the point

from which time is to be reckoned, the angle equals angle

2i7tt

KOB — angle KOX, or -jr — e, where t is now the time re-

quired for the moving-point to describe the arc KB, and e is

the epoch or the angle KOX.
The formulas then become

l2nt
S — a COS\^-yr -^)^

27r . (27ri
-=: a sm \p^

\
V — — -~ a sin V-j,— el;

/ = — yr « cos \^ — ej.
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Returning to our first suppositions, letting X be the point

from which epoch and time are reckoned, it is plain that, since

BC = asivKp = a cos^0 — -j = a cos(-™ 1,

the projection of B on the diameter OV also has a simple

harmonic motion, differing in epoch from that in the' diameter
TV

OX by — . It follows immediately that the composition of two

simple harmonic motions at right angles to one another, hav-

ing the same amplitude and the same period, and differing m
epoch by a right angle, will produce a motion in a circle of

radius a with a constant velocity. More generally, the co-

ordinates of a point moving with two simple harmonic mo-
tions at right angles to one another are

X = a cos(0 — e) and y = b cos 0'.

If and <t>' are commensurable, that is, if 0' = «0, the
curve is re-entrant. Making this supposition,

X = a cos cos 6 -j- a sin sin e, and y = b cos «0.

Various values may be assigned to a, to b, and to n. Let a
equal b and n equal i ; then

X = y cose-\-(a^ — /)* sin e

;
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from which

x^ —2xy cos e +7' cos' e = «' sin' e — f sin' e,

or,

x' — 2xy cos e -|-y = a° sin' e.

This becqrnes, when e = 90°, jr* -f-y = a', the equation for a

circle. When e = 0°, it becomes jr — j/ = o, the equation for

a straight line through the origin, making an angle of 45° with

the axis of X. With intermediate values of e, it is the equa-

tion for an ellipse. If we make n = 2, we obtain, as special

cases of the curve, a parabola and a lemniscate, according as

e = 0° or 90°. If a and b are unequal, and n r= i, we get, in

general, an ellipse.

If a. line in which a point is describing a simple harmonic

motion be made to move in a direction perpendicular to itself,

tljie moving-point will describe a harmonic curve, called also a

sinusoid. It is a diagram of 2. simple wave. If the ordinates

of the curve represent displacements transversely from a fixed

line, the curve is the diagram of such waves as those of the

ether which constitute light. If the ordinates of the curve

represent displacement longitudinally from points of equilibri-

um along a fixed line, the curve may be employed to represent

the waves which occur in the air when transmitting sound.

The length of the wave is the distance between any two iden-

tical conditions of points on the line of progress of the wave.

The amplitude of the wave is the maximum displacement from

its position of equilibrium of any particle along the" line of

progress.

If we assume the origin of co-ordinates such that the epoch

of the simple harmonic motion at the axis of ordinates is o.
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the. displacement from the line of progress of any point on the

wave is represented by

= a cos \2n-~\.

The displacement due to any other wave differing from the

first only in the epoch is represented by

Sj ^ a cos [^Tt-^ — ej.

We shall now show, in the simplest case, the result of com-

pounding two wave motions.

The displacement due to both waves is the sum of the dis-

placements due to each, hence

s -\- s^ ^ a\ cos 27t -^ -\- cos 1 27? 7^ — ej

r ^1 *
, •

t
.

'= a cos 27r^ -|- cos 27t -^ cos e -j- sm 2;i -~ sm e

= a cos 2n -={\ -\- cos e) -|- sin 27r -^ sin e .

If for brevity we assume a value A and an angle such that

A cos = «(i + cos e),

and

A sin = a sin e,

we may represent the last value o{ s -\- s^ by

A cos \2n-7p — 0|.
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From the two equations containing A, we obtain, by adding

the squares of the values of A sin and A cos 0,

A = {2a' + 2a' cos e)*;

and, by dividing the value of A sin by that of A cos 0, we
obtain

sin e
= tan-'

:

I -|- cos e"

The displacement thus becomes

/ t sin e \

s + s,= «(2 + 2 cos e)i cos ^2;r^ - tan"' flf^^J- ^9)

This equation is of great value in the discussion of prob-

lems in optics.

The principle suggested by the result of the above discus-

sion, that the resultant of the composition of two simple har-

monic motions is a harmonic motion of which the elements

depend on those of the components, can be easily seen to

hold generally.

Avery important theorem, of which this principle is the

converse, was given by Fourier. It may be stated as follows

:

Any complex periodic function maybe resolved into a number

of simple harmonic functions of which the periods are com-

mensurable with that of the original.function.

As an example, any wave not simple may be decomposed

into a number of simple waves the lengths of which are to each
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Other as \, \, \, etc. The number of these simple waves is, in

general, infinite, but in special cases determinate both as to

number and to period.

20. Force.—Whenever any change occurs, or tends to

occur, in the momentum of a body, we ascribe it to a cause

called z. force.

Whenever motions of matter are effected by our direct

personal effort, we are conscious, through our muscular sense,

of a resistance to our effort. The conception of force to which

this consciousness gives rise, we transfer, by analogy, to the

interaction of any bodies which is or may be accompanied by
change of momentum. The question whether this analogy is

or is not valid, is not involved in a purely physical discussion

of the subject. ' A force, in the physical sense, is the assumed

cause of an observed change of momentum. It is known and

measured solely by the rate of that change.

If a body.be moving with any acceleriation whatever, the

force acting on it is fully expressed by the product of the mass

of the body into its acceleration.

The formula for force is, therefore,

The dimensions of force are MLT'^.

As acceleration is always referred to some fixed direction,

it follows that force is a quantity having direction.

The product of the time during which a force acts by its

mean intensity is called the impulse of the force.

The practical unit of force is the dyne, which is the force

that can impart to a gram of matter one unit of acceleration

;

that is to say, one unit of velocity in one second.



22] MECHANICS OF MASSES. 2^

21. Field of Force.

—

A field offorce is a region such that

a particle constituting a part of a mutually interacting system,

placed at any point in the region, will be acted on by a force,

and will move, if free to do. so, in the direction of the force.

The particle so moving would, if it had no inertia, describe

what is called a line of force, the tstngent to which, at any
point, is the direction of the force at that point. The strength

offield at a point is measured by the force developed; by unit

quantity at that point, and is expressible, in terms of lines of

force, by the convention that each line represents a unit of

force, and that the force acting on unit quantity at any point

varies as the number of lines of force which pass perpendicu-

larly through unit area at that point. Eacli line, therefore,

represents the direction of the force, and the number of lines

passing through unit area, the strength of field. An assem-

blage of such lines of force considered with reference to their

bounding surface is called a tube offorce.

22.. Newton's Laws of Motion.—We are now ready for

the consideration of the laws of motion, first formally enun-

ciated and successfully applied by Newton, and hence known
by his name

:

Lex L—Corpus omne perseverare in statu suo quiescendi

vel movendi uniformiter in directum, nisi quatenus illud a

viribus impressis cogitur statum suum mutare.

Lex II.—^Mutationem motus proportionalem esse vi mo-
trici impressae & fieri secundum lineam rectam qua vis ilia

imprimitur.

Lex III.—Actioni contrariam semper & aequalem esse

reactionem ; sive corporum duorum actiones in se mutuo
semper esse aequales & in partes- contrarias dirigi.

The subjoined translations are given by Thomson and Tait

:

Law I.—Every body continues in its state of rest or of

motion in a straight line, except in so far as it may be com-

pelled by force to change that state.
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Law Il.^-Change of motion is proportional to force ap-

plied, and takes place in the direction of the straight line in

which the force acts.

Law IIL—To every action there is always an equal and

contrary reaction : or, the mutual actions of any two bodies

are always equal and oppositely directed.

23. Discussion of the Laws of Motion.—(i) The first

law is a statement of the important truths implied in our defi-

nition of force,—that motion, as well as rest, is a natural state

of matter ; that moving bodies,' when entirely free to move,

proceed in straight lines, and describe equal spaces in equal

times ; and that force is the cause of any deviation from this

uniform rectilinear motion.

That a body at rest should continue indefinitely in that

state seems perfectly obvious as soon as the proposition is

entertained ; but that a body in motion should continue to

move in a straight line is not so obvious, since motions with

which we are familiar are frequently arrested or altered by
causes not at once apparent. This important truth, which is

forced upon us by observation and experience, may, however,

be presented so as to appear almost self-evident. If we con-

ceive of a body moving in empty space, we can think of no
reason why it should alter its path or its rate of motion in any
way whatever.

(2) The second law presents, first, the proposition on
which the measurement of force depends; and, secondly,

states the identity of the direction of the change of motion
with the direction of the force. Motion is here synonymous
with momentum as before defined. The first proposition we
have "already employed in deriving the formula representing

force. The second, with the further statement that- more
than one force can act on a body at the same time, leads

directly to a most important deduction respecting the com-
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bination of forces ; for the parallelogram law for the resolution

and composition of motions being proved, and forces being

proportional to and in the same direction as the motions

which they cause, it follows, if any number of forces acting

simultaneously on a body be represented in direction and

amount by lines, that their resultant can be found by the

same parallelogram construction as that which serves to find

the resultant motion. This construction is called the paral-

lelogram offorces.

In case the resultant of the forces acting on a body be

zero, the body is said to be in equilibrium.

(3) When two bodies interact so as to produce, or tend to

produce, motion, their mutual action is called a stress. If one

body be conceived as acting, and the other as being acted on,

the stress, regarded as tending to produce motion in the body

acted on, is a, force. The third law states that all interaction

of bodies is of the nature of stress, and that the two forces

constituting the stress are equal and oppositely directed.

From this follows directly the deduction, that the total

momentum of a system is unchanged by the interaction of its

parts ; that is, the momentum gained by one part is counter-

balanced by the momentum lost by the others. This princi-

ple is known as the conservation of momentum.

24. Collision of Bodies.—If two bodies, m^ and m^, with

velocities v^ and v^ in the same line, impinge, their velocities

after contact are found, in two extreme cases, as follows :

(i) If the bodies are perfectly inelastic, there is no tend-

ency for them to separate, their final velocities will be equal,

and their momentum will be equal to the sum of their sepa-

rate momenta ; hence

m,v^ \- m^v^ = {m, + m^)x, (i i)

where: x is the velocity after impact.
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(2) If the bodies are perfectly elastic, they separate with a

force equal tO' that by which they are compressed.

Let V represent their common velocity just at the instant

when the resistance to . compression balances the impulsiv^e

force. Then the change in momentum in each body up to

this instant is m^v^ — v), or m^{v— v^ ; and the further change

of momentum, by reason of the- elasticity of the bodies, is the

same; whence the whole momentum lost by the one is

2mjj)^ — v) and that gained by the other 2mJ^v — v^. If x
represent the final velocity of m^ we have the equation

m^v^ — m^x = 2m^v^ — 2m^v,

whence

X = 2V ^ V^.

In like manner, ily represent the final velocity of m^, we find

y = 2v — V,.

From the formula for inelastic bodies, which is applicable at

the moment when both bodies are moving with the same
velocity,

whence, finally,

^__ {m,-m,)v,-{-2m,v,

m^ -\-m, • '

.__
\^^ — fn;)v^ -\- 2m,v,

(12)

25. Inertia.—The prihciple of equality of action and re-

action holds equally well when we consider a single body as
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acted on by a force. The resistance to change of motion

offered by the inertia of the body is equal in amount and

opposite in direction to the acting force. Inertia is not of

itself a force, but the property of a body, enabling it to offer

a resistance to a change of motion.

26. Work and Energy.—When a force causes motion

through a space, it is said to do work.

The measure of work is the product of the force and the

space traversed by the body on which the force acts. The

formula expressing work is therefore

mfs. (13)

The dimensions of work are MUT~'.
In the defined sense of the term, no work is done upon a

body by a force unless it is accompanied by a change of posi-

tion, and the amount of work is independent of the time

taken to perform it. Both of these statements need to be

made, because of a natural tendency to confound work with

conscious effort, and to estimate it by the effect on our system.

A body may, in consequence of its motion or position with

respect to other bodies, have a certain capacity for doing work.

This capacity for doing work is its energy. Energy is of two

kinds, usually distinguished as potential and kinetic. The

former is due to the position of the body, the latter to its

motion. 1

Since th^ potential energy of a body is due to the exist-

ence of a force acting upon it, it is clear that, if the body be

free to move, it will be moved by the force, and its potential

energy will be diminished. Hence, in any system of bodies

free to move, movements will occur until the potential energy

of the system becomes a minimum.

If a niass m be moving with a velocity v, its capacity for

doing work may be determined from the consideration, that,
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if the motion be opposed by a force F equal to mf, the mass

suffers a negative acceleration /, and is finally brought to rest

after traversing a space s in opposition to the force. From

Eq. (5) we have ^ = —p. Multiplying both sides of this,equa-

2

tion by i^= mf, we have Fs = . But ^Fs is the work done

by the body against the force F, and is, therefore, the capacity

which the body originally had for doing work. ' This capacity

—that is, the kinetic energy of the body—is then represented

by the expression .

The dimensions of energy s.r&MDT-", the same as those

of work. Since the square of a length cannot involve direction;

it follows that energy is a quantity independent of direction.

The practical unit of work and energy is the erg.

It is the work done against a force of one dyne, in moving
its point of application in the line of the force through a space

of one centimetre

;

Or, it is the energy of a body so conditioned that it can
exert the force of one dyne through a space of one centimetre

;

Or, it is the energy of a mass of two grams moving with

unit velocity.

27. Conservation of Energy.—The difference between
the kinetic energy of a body at the beginning and at the end
of any given path is equal to the work done in traversing that

path. For, if we consider the mass m having an acceleration

/, and moving through a space s, so small that the acceleration

may be assumed constant, we have, from Eq. (5),

v-' = v: + 2fs,

where s replaces the .? — j„ of the equation.
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Multiplying by ^m, we have

\m'v' = ^mv' -\- mfs.

Since any motion whatever may be divided into portions in

which the above conditions hold true, it follows that we have

finally, for any motion,

^v' — imv„'+ m/,s,-{- m/,s, -f- . . . = ^v' -\- ^mfs.

Since \mv^, or the initial kinetic energy, is a constant

quantity, it follows that \mv'' — 2mfs, or the sum of the

kinetic and potential energies, is a constant quantity for any
body moving under the action of forces without collision with

other bodies. In other words, a body, by losing potential

energy, gains an equal amount of kinetic energy; and the

kinetic energy, being used to .do work against acceleration^

places the body in a position where it again possesses its

.original amount of potential energy.

This statenient holds true for any body of a system made
up of bodies moving, without collision, only under their mu-
tual interactions. It follows therefore that the total energy of

such a system remains constant.

There are other forms of energy besides the potential and
kinetic energies of masses. By suitable operations energy in

any one form may be transformed into energy of any other

form. The simplest example of such a transformation is the.

simultaneous production of heat and loss of mechanical en-

ergy by friction or collision.

In any closed system, into which no energy enters, and out.

of which no energy passes, the statement made above for the

energy of a simple system of bodies holds true, if all forms of.'

3
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energy in the system are taken into account. Whatever trans-

formations of the energy within the system occur, its total

amount remains constant. This principle, called the principle

of the conservation of energy, can be demonstrated to hold for

the mechanical interaction of bodies moving without collision,

and has been established by experiment for operations involv-

ing molecular and atomic interactions. It is a general prin-

ciple, with which all known laws of the material universe are

consistent.

The principle of the conservation of energy is so well estab-

lished and so universally accepted, that, where convenient, it

has been used in the demonstrations of this book as a funda-

mental principle.

28. Difference of Potential.—The difference of potential

between two points in a field of force is measured by the work
done by the forces of the field in moving a test unit of the

quantity to the presence of which the force is due from one

point to the other.

If Vp— Vq represent the difference of potential between

the points Pand Q, and if F represent the average force be-

tween those points and s the distance between them, then the

amount of work done in moving a unit from P to Q, and

hence the difference of potential between P and Q, is rep-

resented by

Vp-Vq = Fs.

From this relation we have

F = Vp-Vq_ Vq-Vp

If s become indefinitely small, in the limit F represents the

Vp — Vj> dV
force at the point P, and — — —j- becomes the
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rate of change of potential at that point with respect to space,

taken with the opposite sign. Hence we obtain a definition of

Jiotential. It is a function, the rate of change of which at any

point, "with respect to space, taken with the opposite sign,

measures the force at that point.

In the discussion which follows we deal with forces which

vary directly as the product of the quantities acting, and in-

versely as the squares of the distances which separate them.

For convenience, these acting quantities will be called masses

or quantities of matter. By the substitution of proper terms

the theorems to be presented will hold equally well in all cases

involving forces acting according to this law.

If the field be due to the presence of a mass m, which repels

the test unit, at a distance s, with a force expressed by

km

the difference of potential between two points, distant r and

R from the mass m, is expressed by

The symbol k represents the force with which two unit masses

at unit distance repel one another.

To obtain this formula in the simplest case, let us suppose

a mass at the point O (Fig. 9) acting upon
^ ^^

km I LJ_ i_u

a unit at Pwith a force 'fequal to ^^. If p,e. g.

the unit be moved to Q the force at Q is-^ ; and the average

force acting while the unit is moving in the path PQ, provided
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this path be taken small enough, is

km
OP-OQ'

The work done in moving the unit through PQ is

(a^)^2 =-^op- OQ) = ta^g - j^).

The work done in moving the unit through any other small

space QR towards 5 is, similarly.

The last value obtained by moving the unit from 5 to T is

^^\0T~~ OS/'

The sum of these values,

gives the work done in moving the unit through the space PT.
It is evident that the amount of work done upon the

unit to move it from P to 7" is independent of the path.

For, if this were not so, it would be possible by moving from

Pto T on one path, and returning from T' to P on another, ta

accumulate an indefinite amount of energy ; which the principle:

of the conservation of energy shows to be impossible.
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Since the point T can be considered as on the surface of a

sphere of which O is the centre, and since the force -?yj^ acts

along TO perpendicular to that surface, and cannot, therefore,

have a component tending to produce motion on that surface,

there is no work done in moving the unit at T over the surface

of the sphere to any other point X on it : it follows that the

difference of potential between P and any other point at dis-

tance r from O is the same as that between P and T. Whence

Vr-V^^kJ^--^^. (14)

Such a surface as the one described, to which the lines of

force are perpendicular, is called an equipotential surface.

If the point P be supposed to be at a distance from O so

great that the force at that distance vanishes, it is then at zero

potential. R becomes indefinitely large, and the absolute poten-

tial z.\.
2" becomes

km
Vr=—. (15)

This formula expresses the work necessary to move the

unit against the repulsion of the mass at O up to the point T
from an infinite distance. If the mass attract the unit, the

work is done by the attraction upon the unit in so moving up

to T, and the potential is negative.

From the definitions, it is plain that the difference of poten-

tial between P and T equals the difference of the potential

energies of a unit at those points.

If the potential of any point be due to the action of more

than one mass, it is found by adding the potentials due to the
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separate masses. If 2 be a summation sign indicating this

operation, Eqs. (14) and (15) become

Vp-VQ = :Skm^--'--^, (I4>

and

Vr = -2—.
r

29. Theorems relating to Difference of Potential.—
(i) The force at any point within a spherical shell of uniform'

thickness and density is zero. For, if S represent the density

of the shell, and if a^, and cd^ represent

the volumes of the portions of the

shell cut out by a cone having its apex
at O (Fig. 10), then the force, if an attrac-

kSad,
tion, acting towards « is

Oa'
-, and towards

Fig. 10.
C IS Hence the efficient force tend-

ing to produce motion, say towards a, is expressed by

Mi^-^;cd,\
Oc'r

Now, if ab^, cd„ be taken small enough, they will be frusta

of similar cones, and, as a consequence,

Od'
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from which, since the density of the shell is uniform,

^(S-^)--

Since the whole surface of the shell may be cut by similar

cones, for which similar equations will hold, the total force ex-

erted by the shell on a unit within it becomes zero. This be^

ing so, it follows that the potential throughout the sphere is

constant ; for no work is required to move the unit from one

point to another in the interior.

(2) The potential, and therefore the force at a point, due to

the presence of a spherical shell of uniform density, depends

only on the mass of the shell and on the distance of the

point considered from the centre of the sphere. Let CKL
(Fig. 11) represent a central section of the shell, of which O
is the centre. Let d represent the mass of a portion of the

shell having unit of area. The potential at B, due to the

element of the sphere at Ky having an area represented by s, is

ds
V, BK'

and the potential due to the whole sphere is the

summation of that due to all the similar elements making up
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the sphere. Take a point A on the line OB, such that OA . OB
= R, where R is the radius of the sphere ; draw AK, produce

it to L, and draw OK and OL. Now, if we represent the angle

OKA by a, and the solid angle subtended by the element s, as

AK" .oa
seen from A,hy 00, we may express s in other terms as ;

lience

dAK'co
' ~ BK cos a

Now, since, by construction, OB : R = R : OA, and the

angle KOB is common to the two triangles KOA and BOK,
these triangles are similar; hence

AK _ R_

BK ~ OB'

The value of the potential due to s may then be written

' COS a OB

The value for the potential of the corresponding element

at L is, similarly,

^"^'^Esr^-oB-'^'

Adding these values, we obtain

J. , „ ,R (AK-\-AL\
' ' " OB \ cos a J
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But

AK-^AL KL
cos a cos a

hence we obtain, finally,

= 20K=2R;

V, + V„ = 2d-^^.

Now the sphere may be divided into two portions, made
up of elements similar to K and L, by a plane passing through

A normal to OB. We obtain tHe whole potential, therefore,

by summing all the potential values due to these pairs of

elements; whence

V= 2d^y^oa.

The sum of all the elementary solid angles on one side of

the plane from the point A in it is 2n; hence, finally,

R'd _ m

Tvhere m is the mass of the spherical shell.

Since the force at the point B depends on the rate of change

of potential at that point with respect to space, it varies in-

versely as the square of the distance OB. Represent OB by /.

m
In the expression V=-j,\&t I change by a small increment Al,

and denote the corresponding change in the potential by A V;

then

V+AV= "^
l+Al'

Vl+VAl-\-lAV-\-A VAl = m.
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If Al become indefinitely small, in the limit the product.

A VAl may be neglected. We then have
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2nd in the other direction, it is clear that, in passing through
the disk, the force changes by ^ttd.

30. Moment of Force.—1'\\& moment offorce z!oovX a point

is defined as the product of the force and the perpendicular

drawn from the point upon the line of direction of the force.

The moment of a force, with respect to a point, measures

the value of the force in producing rotation about that point.

If momentum be substituted for force in the foregoing defi-

nition, we obtain the definition of moment of momentum.

In order to show that the moment of a force measures the

value of that force in producing rotation, we will find the di-

rection and amount of the resultant of two forces in the same

plane acting on a rigid bar, but not applied at the same point.

Let BD (Fig. 13) be the bar, Z'i^'and BG the forces. Their

lines of direction will, in general, meet at some point as O.

Moving the forces up to O, and applying the parallelogram of

forces, we obtain the resultant OJ,

which cuts the bar at A. If we
resolve both forces separately,

parallel to OJ and BD, this re-

sultant equals in amount the sum
of those components taken paral-

lel to OJ. Hence the compon-

ents EF and CG, taken parallel to ^^ '^ fig. 13.

DB, annul one another's action, and, being in opposite direc-

tions, are equal. Now, by similarity of triangles,

OA:AB = BC:CG,

and

OA:AD = DE:EF:

whence, since CG = EF, we obtain

AB-BC = AD-DE:
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Resolving both DE and BC perpendicular to DB, we see that

the moments of force about A are equal. Now, if the result-

ant OJ be antagonized by an equal and opposite force applied

at A, there will be no motion. Hence the tendencies to rota-

tion due to the forces are equal,—a result which is in accord

with our statement that the moment of force is a measure of

the value of the force in producing rotation.

The resultant of two forces may be found in general by

this method. The case of most importance is the one in

which the two forces are parallel. The lines DE and BC in

the diagram represent such forces. It is plain, from the dis-

cussion, that these forces also will have the force represented by

C|/as their resultant, applied at the point A. The resultant

of two parallel forces applied at the ends of a rigid bar is then

a force equal to their sum applied at a point such that the two

moments of force about it are equal.

31. Couple.—The combination of two forces, equal and

oppositely directed, acting on the ends of a rigid bar, is called

a couple. By the preceding proposition, the resultant of these

forces vanishes, and the action of a couple does not give rise

to any motion of translation. The forces, however, conspire

to produce rotation about the mid-point of the bar. It follows

from the fact that a couple has no resultant, that it cannot be

balanced by any single force.

32. Moment of Couple.—The moment of couple is the pro-

duct of either of the two forces into the perpendicular distance

between them. It follows from what has been already proved,

that this measures the value of the couple as respects rota-

tion.

33. Centre of Inertia.—If we consider any system of equal

material particles, the point of which the distance from any
plane whatever, is equal to the average distance of the several

particles from 1;hat plane, is called the centre of inertia. This
point is perfectly definite for any system of particles. It fol-
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lows from the definition, that, if any plane pass through the

centre of inertia, the sum of the distances of the particles on

one side of the plane, from the plane, will be equal to the sum
of the distances of the particles on the other side : hence, if

the particles are all moving with a common velocity parallel to

the plane, the sum of the moments of momentum on the one

side is equal to the sum of the moments of momentum on the

other side. And, further, if the particles all have a common
acceleration, or are each acted on by equal and similarly di-

rected forces, the sum of the moments of force on the one side

is equal to the sum of the moments of force on the other side.

If we combine the forces acting on two of the particles, one

on each side of the plane, we obtain a resultant equal to their

sum, the distance of which from the plane is determined by the

distances of the two particles from the plane. Combining this

resultant with the force on another particle, we obtain a second

resultant ; and, by continuing this process until all the forces

have been combined, we obtain a final resultant, equal to the

sum of all the forces, lying in the plane, and passing through

the centre of inertia. This resultant expresses, in amount,

direction, and point of application, the force which, acting on

a mass equal to the sum of all the particles, situated at the

centre of inertia, would impart the same acceleration to it as

the conjoined action of all the separate forces on the separate

particles imparts to the system. When the force acting is the

force of gravity, the centre of inertia is usually called the centre

ofgravity.

When the forces do not act in parallel lines, the proposi-

tion just stated does not hold true, except in special cases.

Bodies in which it still holds are, for that reason, called centro-

baric bodies.

The centre of inertia can be readily found in most of the

simple geometrical figures. For the sphere, ellipsoid of revolu-

tion, or parallelopiped, it evidently coincides with the centre of
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figure ; since a plane passing through that point in each case

cuts the solid symmetrically.

34. Mechanical Powers.—The preceding definitions and

propositions find their most elementary application in the so-

called mechanical powers.

These are all designed to enable us, by the application of a

certain force at one point, to obtain at another point a force,

in general not equal to the one applied. Six mechanical

powers are usually enumerated,—the lever, pulley, wheel and

axle, inclined plane, wedge, and screw.

(i) The Lever is any rigid bar, of which the weight may be

neglected, resting on a fixed point called ^fulcrum. From
the proposition in § 30, it may be seen, that, if forces be ap-

plied to the ends of the lever, there will be equilibrium when
the resultant passes through the fulcrum. In that case the

moments of force about the fulcrum are equal ; whence, if the

forces act in parallel lines, it follows that the force at one end
is to the force at the other end in the inverse ratio of the

lengths of their respective lever-arms. If /and /^ represent the

lengths of the arms of the lever, and P and P^ the forces ap-

plied to their respective extremities, then P/^ P/^.

The principle of the equality of action and re-action enables

us to substitute for the fulcrum a force equal to the resultant

of the two forces. We have then a

combination of forces as represented

in the diagram (Fig. 14). Plainly any
IP one of these forces may be considered

^'°- '• as taking the place of the fulcrum, and
either of the others the power or the weight.

The lever is said to be of the first kind if R is fulcrum and
P power, of the second kind if P, is fulcrum and P power, of

the third kind if P is fulcrum and R power.

(2) The Pulley is a frictionless wheel, in the groove of which
runs a perfectly flexible, inextensible cord.
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If the wheel, be on a fixed axis, the pulley merely changes

the direction of the force applied at one end of the cord. If

the wheel be movable and one end of the eord fixed, and a

force be applied to the other end parallel to the direction of

the first part of the cord, the force acting on the pulley is

double the force applied : for the stress op the cord gives rise

to a force in each branch of it equal to the applied force ; each

of these forces acts on the wheel, and, since the radii of the

wheel are equal, the resultant of these two forces is a force

•equal to their sum applied at the centre of the wheel. From
these facts the relation of the applied force to the force ob-

tained in any combination of pulleys is evident.

(3) The Inclined Plane is any frictionless surface, making an

angle with the line of direction of the force applied at a point

upon it. Resolving the force P (Fig. 15), making an angle

with the normal to the plane, into its com-

ponents Pcos and Psin perpendicular

to and parallel with the plane, P sin is

alone effective to produce motion. Con-

sequently, a force P sin acting parallel

to the surface will balance a force P, mak- ^'°" '''

ing an angle with the normal to the surface. If the plane

be taken as the hypothenuse of a right-angled triangle ABC,

of which the base AB is perpendicular to the line of direction

of the force, then, by similarity of triangles, the angle BAC
equals 0: whence the force obtained parallel \.q AC xs, equal

to the force applied multiplied by the sine of the angle of in-

clination of the plane. If the components of the force applied

be taken, the one, as before, perpendicular to the plane AC,

and the other parallel to the base AB, the force obtained

parallel to AB is equal to the force applied multiplied by the

tangent of the angle, of inclination of the plane.

(4) The Wheel and Axle is essentially a continuously acting

lever.
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(5) The Wedge is made up of two similar inclined planes set

together, base to base.

(6) The Screw is a combination of the lever and the in-

clined plane.

The special formulas expressing the relations of the force

applied to the force obtained by the use of these combinations,

are deduced from those for the more elementary mechanical

powers.

It may be seen, in general, in the use of the mechanical

powers, that the force applied is not equal to the force ob-

tained. A little consideration will show, however, that the

energy expended is always equal to the work done.

Any arrangement of the mechanical powers, designed to

do work, is called a machine. The more nearly the value of

the work done approaches that of the energy expended, the

more closely the machine approaches perfection. The elastic-

ity of the materials we are compelled to employ, friction, and

other causes which modify the conditions required by theory,

make the attainment of such perfection impossible.

The ratio of the useful work done to the energy expended
is called the efficiency of the machine. Since in every actual

machine there is a loss of energy in the transmission, the effi-

ciency is always a proper fraction.

35. Angular Velocity.—The angle contained by the line

passing through two points, one of which is in motion, and
any assumed line passing through the fixed point, will, in gen-

eral, vary. The rate of its change is called the angular velocity

of the moving-point. If <p and 0„ represent the angles made
by the moving Hne with the fixed line at the instants t and /„,

then the angular velocity, if constant, is measured by

w 0-0,
t

If variable, it is measured by the limit of the same expression,
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-^ = -y _ ^
,

as the interval t — t, becomes indefinitely

small.

The angular acceleration is the rate of change of angular

velocity. If constant, it is measured by

CO— GO^

If variable, it is measured by the limit of the same expression,

doo CO — 00. , . , , . , ^ . .

-J
= _ , as the mterval t — t„ becomes mdefinitely

small.

If the radian be taken as the unit of angle, the dimensions

of angle become

r arc

Lradius-
= -^ = I.

Hence the dimensions of angular velocity are T~\ and of an-

gular acceleration, T ~ '.

If any point be revolving about a fixed point as a centre,

its velocity in the circle varies as its angular velocity and the

length of the radius jointly.

Angular velocities may be compounded by a process similar

to that employed for the composition

of motions.

Let OA and OB (Fig. i6) represent

two axes of rotation about which

points are revolving with angular ve-

locities ftJ, and 00^ respectively; both

rotations being clockwise when seen "^ ^''
~- f db

from the point 0. The velocity at a fig. 36.

point L, at unit distance from O, due to the motion about OA,

4
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is t», sin a, and that due to motion about OB is <w, sin ^ in the

opposite direction. The whole velocity of L is, therefore,

ca, sin a ~ w^ sin ^.

There must be some position of L for which this velocity be-

comes zero. Then 00^ sin a = oa, sin /S. It follows at once

that every point on the line OL is at rest. If we consider OL
as the axis of rotation, and suppose the angular velocity of

every point of the system about this axis to be 00, such that

00 sin a =z Qo^ sin (a -j- P), this angular velocity will give the

actual velocity of any point. To illustrate by a simple exam-

ple, we will show that

. „ sin (a -4- /J) . „
G3 sm = co„ -^^ — sm 6

sm a

is the velocity at B at unit distance from O. The velocity at

B is only due to rotation about OA, and is therefore given by

(», sin {a -\- /?). From our previous equation,

£»! sin a = cousin /3;

hence

. , , ^N sin (a-\- /3) , „

sm a

Now
sin (a+ /?) . „

'^ sm « '^'

and the equality of the expressions is shown. Similarly it may
be shown that the value of the velocity at any point N at

unit distance from O, as given by the expression 00 sin NOL, is

equal to that given by to, sin AON— 00^ sin BON. The two
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rotations about OA and OB may thus be combined to form

one rotation about OL.

Draw LF and LE parallel to OA and OB. Then the lines

OE and OF are numerically proportional to the angular veloci-

ties Qjj and 00, ; for, since OELF is a parallelogram,

sin a OF
sinyS C£"

But, from our first equation,

sin or _ CO,

sin /S
~

tOj

'

whence

OF: OE = 00^: oo^.

The line CZ is likewise proportional to oo, for, from the

figure,
.

OF: OL = sin a : sin (« + /?);

Tvhence we see immediately, from the equation giving the value

of CO, that

OL : OF = (a : oo^.

We can therefore obtain the direction of the resultant axis,

and the amount of the angular velocity, due to rotation about

two other axes, by laying off on those axes,v from their point

of intersection, lengths numerically equal to the angular veloci-

ties about them, and drawing the diagonal of the parallelogram

of which they are the sides. And so also any angular velocity

may be resolved into three, the axes of which are at right angles

to one another, by employing the trigonometrical functions of

the angles which its axis makes with the three component axes.
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It has been demonstrated that if a body be established in

rotation, for any finite time, about an axis fixed with reference

to points in it, however the position of the body be altered,,

it will continue to rotate with constant angular velocity about

the same axis, unless constrained by outside forces to change its.

rotation. In other words, the axis of rotation always remains

parallel to itself. This property is of importance in the discus-

sion of some interesting applications of the preceding princi-

ples, which we shall next consider.

(i) The first of these is the method employed by Foucault

to determine by experiment the fact of the earth's rotation.

His apparatus Consisted of a spherical pendulum bob, sus-

pended by a truly cylindrical wire, so that it could swing freely

in any plane. It can easily be seen, that, if such a pendulum

were set up at the pole and swung, it would preserve its plane

of oscillation invariable, and the earth would turn around un-

der it, so that in twenty-four hours the pendulum would seem^

to have traversed a complete circle in the direction of the sun's,

apparent motion. At any other point on the earth's surface

the change in apparent direction of the

plane of oscillation would not be so great.

Let 00 represent the angular velocity of

the earth, t the duration of the experi-

ment, and the latitude. Let the pen-

dulum be supposed to be at A (Fig. 17).

Let NS be the earth's axis. Now, the

angular velocit))' 00, represented by OC,
may be resolved into two components,

OD and DC, the axes of which lie respec-

tively in the direction of the force acting on the pendulum
and at right angles to it. The angular velocity DC has no

influence in changing the relations of the pendulum and the

earth ; but the angular velocity OD = OC sin = 00 sin <t> is

made evident by the rotation of a fixed line on the earth's sur-
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face, cutting the invariable plane of oscillation at the point of

equilibrium of the pendulum. The plane of oscillation of the

pendulum consequently appears to rotate in the opposite di-

rection with an angular velocity a? sin 0, and the angle swept

out in any time t is oot sin 0. By such an apparatus has been

determined, not only the fact of the earth's rotation, but even

an approximate value of the length of the day.

(2) The phenomena presented by the gyroscope also offer

an example of the application of the foregoing principles.

The construction of the apparatus can best be understood

Fig. 18.

by the help of the diagram (Fig. 18). The outermost ring rests

in a frame, and turns on the points a, a^. The inner rests in

the outer one, and turns on the pivots b, b,, at right angles to

the line of aa,. Within this ring is mounted the wheel G, the

axle of which is at right angles to the line bb^, and in a plane

passing through ««,. At the point e is fixed a hook, from which

weights may be hung. It is evident that if the wheel be

mounted on the middle of the axle, the equilibrium of the ap-

paratus is neutral in any position, and that a weight hung on

the hook e will bring the axle of the wheel vertical, without

moving the outer ring. If, however, the wheel be set in rapid
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rotation, with its axle horizontal, and a weight be hung on the^

hook, the whole system will revolve with a constant angular

velocity about the points a, a,, and the axle of the wheel will

remain horizontal.

The explanation of this phenomenon follows from the-

principles which we have already discussed. The conditions-

given are, that a body rotating with an angular velocity in one-

plane is acted on by a force tending to produce rotation in a

perpendicular plane.

Let the plane of the paper represent the horizontal plane,.

^ and the line AB (Fig. 19) represent the

direction of the axle at any moment.

Lay off on OA a length OP proportional

to the angular velocity of the wheel. IfB
°be the point of appHcation of the weight,

the weight tends to turn the system about

an axis CD at right angles to AB. Let
us suppose, first, that, in the small inter-

B val of time t, the system acquires an an-
FiG. 19. gular velocity about CD proportional to-

OQ. Compounding the two angular velocities OP and OQ, we
obtain the resultant OR. Now, resolving OQ parallel and at

right angles to OR, we see that the parallel component is effi-

cient in determining the length of OR, the component at right

angles, the direction of OR. In the limit, as t becomes indefi-

nitely small, OQ also becomes indefinitely small, and the re-

solved component Ox parallel to OR vanishes in comparison

OQ Ox
with OQ ; because from the triangles we have -^ = -^- The

effect will be a change of direction of the axle AB in the hori-

zontal plane, without a change in the angular velocity of the.

wheel. This change is the equivalent of the introduction of a

new angular velocity about an axis perpendicular to the plane

of the paper. This new angular velocity, compounded with

the angular velocity about OA, gives rise, as before, to a changer
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in the direction of the axis without a change in the angular

velocity of the wheel ; and this change in direction is such as

to oppose the angular acceleration about CD, introduced by

the weight at B. The system will revolve in a horizontal plane

about (9 as a centre.

Another explanation, leading to the same results, has been

given by Poggendorff. As has already been stated, it requires

the application of a force to change the direction

of the axis of a rotating body. This force is ex-

pended in changing the direction of motion of the

component parts of the body. Poggendorf's ex-

planation of the movements of the gyroscope is
cf-

based on the action of couples formed by these

separate forces. p\

Let Fig. 20 represent the rotating wheel of the

former diagram, the axle being supposed to be

nearly horizontal. If the weight be hung at the

point e, it tends to turn the wheel about a horizontal axis CD.

The particles moving at A and at B in the plane CD offer no

resistance to this change. Those at C moving downwards, and

those at D moving upwards, act otherwise. The forces ex-

pressed by their momentum in the directions Cp and Dq are re-

solved into two each, one of them in the new plane assumed

by the wheel, and the other at right angles to it. It will be

seen that the latter component acts at C towards the right,,

and at D towards the left. There is thus set up a couple act-

ing to turn the system about the axis AB counter-clockwise,.

as seen from A. As soon as this rotation begins, the particles

moving at A out of the paper, and at B through the paper, are

turned out of their original directions, and there arises another

couple, of which the component at A is directed towards the

left, and at B towards the right. This couple tends to cause

the system to rotate about the axis CD counter-clockwise, as

seen from C, and thus to oppose the tendency to rotation due

to the weight at e.
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All other points on the wheel except those in the lines AB
and CD, are turned out of their paths by both rotations; and

therefore components of the forces due to their motions ap-

pear in both couples in the final summation of effects. The
result of the existence of these couples is a movement such as

has already been described;

36. Moment of Inertia.—The moment of inertia of any
body about an axis is defined as the summation of the products

of the masses of the particles making up the body into the

squares of their respective distances from the axis.

This product is the measure of the importance of the body's

inertia with respect to rotation, and is proportional to the ki-

netic energy of the body having a given angular velocity about

the axis ; for, if any particle m, at a distance r from the axis,

rotate with an angular velocity oo, its velocity is rw and its ki-

netic energy is ^moo^'r'. The whole kinetic energy of the body
is, therefore, ^w'Smr' ; and since we have assumed l-ta" to be
•constant, ^mr" is proportional to the kinetic energy of the ro-

tating body. If we can find a distance k such that ^k^af'Sm
— ^oa'Smr', k is called the radius of gyration, and is the dis-

tance at which a mass equal to that of the whole body must be
concentrated to possess the same moment of inertia as the
body possesses.

The formula for moment of inertia is

I= '2mr\ (18)

and its dimensions are MD.
The moment of inertia of a body with reference to an axis

passing through its centre of inertia being known, its moment
of inertia with reference to any other axis, parallel to this, is

found by adding to the moment of inertia already known, the
product of the mass of the body into the square of the distance
of its centre of inertia from the new axis of rotation. For if
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the centre of inertia of the body of which we know the moment
of inertia be C, and if m be any particle of that body, and if

O be the new axis to which the moment of inertia is to be re-

ferred, making the construction as in Fig. 21, we have

r' = rt" + zrfi + ^/.

Multiplying by the mass m., performing a similar operation

for every particle of the body, and summing the results, we
have

The term 2'2mrfi on the right van-

ishes, for we may write it zr/^mb ; and,

since C is the centre of inertia, 2mb is

zero (§ 33). Therefore
Fig. 21.

/^ = /+ Mr;. (19)

This equation embodies the proposition which was to be

proved.

The moment of inertia of the simple geometrical solids

may be found by reckoning the moments of inertia for the

separate particles of the body, and summing the results. We
will show how this may be done in a few simple cases.

(i) To find the moment of inertia of a very thin rod AB,

of length 2/' and mass 2m', about an axis xx'
,
passing through

the middle point

:

Suppose the half-length to be divided into a very large

tn'

number n of equal parts. The mass of each will be --. The

/' 2/'

distance of the first from the axis is -, of the second — , etc.
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Their moments of inertia are

m!^ r_ m' P_ in!_ J!^

and the moment of inertia of the half-rod is

m'l"
/'=-^(i+4 + 9--

• + «")•

But (I + 4 + 9 . . . -|- «"), where n is indefinitely large, is —

^

hence / = .

3

Fig.

If / equal the whole length of the rod, m the whole mass,
and / the entire moment of inertia.

/:
12 (20)

(2) To find the moment of inertia of a thin plate AB (Fig.

23), of length / and breadth 2b', about an axis perpendicular

to it and passing through its centre :
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Suppose the half-plate to be divided into n rods, parallel tO'

b'
length : each rod will have a length / and a breadth -.

. . b' 2b' , , ,

eir distances from the axis are -, —, etc. Let m be the
n n

,ss of the plate. The moment df inertia of each rod, with.

pect to an axis passing through its centre of inertia and

•pendicular to its length, is — X — The moments of in-

ia of the several rods about the parallel axis xx' are

m
2n '

IP
,

b'\ mil' . b''\ ^

i the moment of inertia of the half-plate is

r
,
m b'\

, , , ,, mil-" . b'\m
2n

d of the whole plate equals

m-^—. (21).
12

A parallelepiped ot which the axis is xx' may be supposed

be made up of an infinite number of plates, such as AB.

i moment of inertia will be the moment of inertia of one

ite multiplied by the number of plates ; or, if M is the mass

the parallelopiped, its moment of inertia is

f(^'+ ^'). (22)
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The moment of inertia of any body, however irregular in

form or density, may be found experimentally by the aid of

another body of which the moment of inertia can be computed

from its dimensions. We will anticipate the law of the pendu-

lum, which has not been proved, for the sake of clearness.

The body of which the moment of inertia is desired is set

oscillating about an axis under the action of a constant force y.

Its time of oscillation is, then.

^ f

where / is the moment of inertia.

If, now, another body, of which the moment of inertia can
be calculated, be joined with the first, the time of oscillation

alters to

t, = n^.
f '

where I, is the moment of inertia of the body added. Com-
bining the two equations, we obtain, as the value of the
moment of inertia desired,

/= If
t' - f

37. Central Forces.—If the velocity or direction of motion
of a moving body in any way alter, we conceive it to be acted
on by some force. In certain cases the direction of this force.
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1

the law of its variation with the position of the body, may-

determined by considering the path or orbit traversed by
body and the circumstances of its motion.

We shall illustrate this by a few propositions, selected on
ount of their applicability in the establishment of the

ory of universal gravitation. The proofs are substantially

se given by Newton in the " Principia."

Proposition I.— If the radius vector, drawn from a fixed point

a body moving in a curve, describe equal areas in equal

es, the force which causes the body to move in the curve

lirected towards the fixed point.

Let us suppose the whole time divided into equal periods,

ing any one of which the body is not acted on by the force.

vill, in the first period, move over a space represented by a

light line, as AB (Fig. 24). In the second period, it would,

inhindered, move over an equal space BD and in the same

:. Let us suppose it, however, deflected by a force acting

tantaneously at the point B. It will move in a hne BC such

t, by hypothesis, triangle OBA — triangle OBC. Now,
,ngle ODB also = triangle OAB, therefore triangle OCB =
ingle ODB, and CD is parallel to OB. Complete the paral-

)gram CDBE ; then it is evident that the motion BC is

npounded of the motions BD and BE ; and since forces are

portional to the motions they

asion, the force acting at^ is

portional to BE, and is directed

ng the line BO. If now the

iods into which the whole time F1G24.

divided become indefinitely small, in the limit the broken

:ABC approaches indefinitely near to a curve, and the force

ich causes the motion in the curve is always directed to the

tre O.

Proposition II.—If a body move uniformly in a circle, the
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force acting upon it varies as its mass and the square of its

velocity directly, and as the radius of the

circle inversely.

If the body m move in a circle (Fig. 25)

with a constant angular velocity, and pass

over, in any very small time t, the arc ad,

which is so small that it may be taken

equal to its chord, the motion may be

resolved into two components ab and ac,

one tangent and the other normal to the

arc. ^Now /, the acceleration towards O,

being constant for that small time, we have

s = ac = \ff.
The angle ade is a right angle, and therefore, by similar tri-

angles, we have

Fig, 25.

ac = ad'

ae

'

But ae = 2r\ ad represents the space traversed in the time t,

and in the limit — represents v, the velocity in the circle.

From the previous reasoning ac represents \ff ; whence

2

and

mf =

2r'

Corollary I.—If two bodies revolve about the same centre,

and the squares of their periodic times be in the same ratio as
the cubes of the radii of their respective orbits, the forces
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ing on them will be inversely as the squares of their radii,

1 conversely. For, if T and T, represent the periodic times

the two bodies moving in circles of radii r and r,, with ve-

ities V and v^, then, by hypothesis,

T:T. = 27cr 2nr, = r» : r/;

ence

w

ence

V -.v^ = r,^ : r*.

v" V?
f--f< - ^ •

';

Corollary 11.—The relation of Corollary I. holds with refer-

:e to bodies describing similar parts of any similar figures

/ing the same centre. In the application of the proof,

ivever, we must substitute for uniform velocity the uniform

icription of areas ; and instead of radii we must use the

tances of the bodies from the centre. The proof is as fol-

ios:

If D and D, represent the radii of curvature of the paths of

: two bodies, R and R^ the distances of the bodies from the

itre of force, then, by hypothesis, letting A represent the

a described in one period of time,

T : T, = ^ .'^- = Ri : R} ^ D^ '. D}

m the similarity of figures.
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Now

hence

and

A:A, = vR\ v,Ri ;

v:v, = Ri : R^ = D^ s Z»,

f-f, = -D--± = ^'--^-

Proposition III.—If a body move in an ellipse, the force

acting upon it, directed to the focus of the ellipse, varies in-

versely as the square of the radius,

vector.

Suppose the body moving in

the ellipse to be at the point P'

(Fig. 26), and the force to act

upon it along the radius vector

SP. At the point P draw the

tangent PR, and from a point Q
on the ellipse draw the chord Qv,

cutting SP in x, and complete the
parallelogram PRQx. From-Q draw QT perpendicular to SP.
Also draw the diameter G^/'and its conjugate DK. The force

which acts on the body, causing it to leave the tangent PR and.

move in the Hne PQ, acts along SP, and in a time t (supposed

very small) causes the body to move in the direction SP over

the space Px ; and since, in the small time considered, it may-
be assumed constant,

Fig. 26/

whence

2Px
f=z

f
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Again : the area described by the radius vector in the time

3 equal to

in unit time,

t is equal to
'-

; and if A represent the area described

2

Equating these values of /, we obtain

SP .QT' 2Px

whence

8A' . Px I

/= QT' SP'

From Proposition L, the value of A is constant for any

Px
part of the ellipse. We shall now show that -?ypi is also

constant.

From similar triangles,

Px:Pv = PE: PC;

or, since by a property of the ellipse PE = AC,

Px:Pv = AC: PC.

Again, by another property of the ellipse,

Gv .Pi: Qv" = PC : CD'.



66 ELEMENTARY PHYSICS. [37

If, now, we consider the time t to become indefinitely small,

in the limit, P and Q approach indefinitely near ; whence

Qv = Qx and Gv = zPC.

The last proportion then becomes

PC .Pv: Qx" = PC : 2CD\

Again, from similar triangles,

Qx:QT^PE:PF=AC: PF;

and from another property of the ellipse,

AC:PF= CD: CB;
whence

Qx:QT= CD: CB.

Combining these proportions,

Px:Pv = AC :PC,

Pv : Qx' = PC : 2CD\

Qx':Qr= CD':CB\

we obtain, finally,

Px: QT'= AC:2CB';

Px
that'is, since AC and CB are constant, -^„, is constant.

We have now shown that, in the expression for the value
of the force on the body at any point in the ellipse, all the

factors are constant except -^. The force, therefore, varies

inversely as the square of the radius vector.



CHAPTER II.

MASS ATTRACTION.

38. Mass Attraction.—The law of mass attraction was the

first generalization of modern science. In its most complete

form it may be stated as follows :

—

Between every two material particles in the universe there

is a stress, of the nature of an attraction, which varies directly

as the product of the masses of the particles, and inversely as

the square of the distance between them. This law is some-

times called the law of universal attraction and sometimes the

law of gravitation.

Some of the ancient philosophers had a vague behef in the

existence of an attraction between the particles of matter.

This hypothesis, however, with the knowledge which they

possessed, could not be proved. The geocentric theory of the

planetary system, which obtained almost universal acceptance,

•offered none of those simple relations of the planetary motions

upon which the law was finally established. It was not until

the heliocentric theory, advocated by Copernicus, strengthened

by the discoveries of Galileo, and systematized by the labors

•of Kepler, had been fully accepted, that the discovery of the

law became possible.

In particular, the three laws of planetary motion published

by Kepler in 1609 and 1619 laid the foundation for Newton's

•demonstrations. The laws are as follows :

—

I. The planets move in ellipses of which one focus is situ-

ated at the sun.

II. The radius vector drawn from the sun to the planet

•sweeps out equal areas in equal times.
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III. The squares of the periodic times of the planets are

proportional to the cubes of their distances from the sun.

Kepler could give no physical reason for the existence of

such laws. Later in the century, after Huyghens had discov-

ered certain theorems relating to motion in a circle, it was

seen that the third law would hold true for bodies moving in

concentric circles, and attracted to the common centre by

forces varying inversely as the squares of the radii of the cir-

cles. Several English philosophers, among them Hooke,

Wren, and Halley, based a belief in the existence of an attrac-

tion between the sun and the planets upon this theorem.

The demonstration was by no means a rigorous one, and

was not generally accepted. It was left for Newton to show
that not only the third, but all, of Kepler's laws were com-

pletely satisfied by the assumption of the existence of an

attraction acting between the sun and the planets, and vary-

ing inversely aa the square of the distance. His propositions

are substantially given in § 37.

Newton also showed that the attraction holding the moon
in its orbit, which is presumably of the same nature as that

existing between the sun and the planets, is of the same nature

as that which causes heavy bodies to fall to the earth. This,

he accomplished by showing that the deviation of the moon
from a rectilineal path is such as should occur if the force which
at the earth's surface is \:^\e force of gravity were to extend

outwards to the moon, and vary in intensity inversely as the

square of the distance.

Two further steps were necessary before the final generali-

zation could be reached. One was, to show the relation of the

attraction to the masses of the attracting bodies ; the other, to

show that this attraction exists between all particles of matter,

and not merely, as Huyghens believed, between those particles,

and the centres of the sun and planets.

The first step was taken by Newton. By means of pen-
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dulums having the same length, but with bobs of different

materials, he showed that the force acting on a body at the

earth's surface is proportional to the mass of the body, since

all bodies have the same acceleration. He further brought

forward, as the most satisfactory theory which he could form,

the general statement that every particle of matter attracts

and is attracted by every other particle.

The experiments necessary for a complete verification of this

last statement were not carried out by Newton. They were

performed in 1798 by Cavendish. His apparatus consisted

essentially of a bar furnished at both ends with small leaden

balls, suspended horizontally by a long fine wire, so that it

turned freely in the horizontal plane. Two large leaden balls

were mounted on a bar of the same length, which turned about

a vertical axis coincident with the axis of rotation of the sus-

pended bar. The large balls, therefore, could be set and

clamped at any angular distance desired from the small balls.

The whole arrangement was enclosed in a room, to prevent all

•disturbance. The motion of the suspended system was ob-

served from without by means of a telescope. Neglecting as

unessential the special methods of observation employed, it is

sufficient to state that an attraction was observed between the

large and small balls, and was found to be in accordance with

the law as above stated.

39. Measurement of the Force of Gravity.—When two

bodies attract one another, their relative motions are deter-

mined by Newton's third law. In the case of the attraction

between the earth and a body near its surface, if we adopt a

point on the earth's surface as the fixed point of reference,

the acceleration of the body alone need be considered. Since

the force acting upon it varies with its mass, and since

its gain in momentum also varies with its mass, it follows

that its acceleration will be constant, however its mass may

vary. We may, therefore, obtain a direct measure of the
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earth's attraction, or of the force ofgravityi by allowing a body

to fall freely, and determining its acceleration. It is found

that a body so falling at latitude 40° will describe in one second

about 16.08 feet, or 490 centimeters. Its acceleration is there-

fore 32.16 in feet and seconds or 980 in centimeters and seconds..

We denote this acceleration by the symbol g.

The force acting on the body, or the weight of the body, is

seen at once to be mg, where m is the mass of the body.

On account of the difficulties in the employment of this

method, various others are used to obtain the value of ^indi-

rectly. For example, we may allow bodies to slide down a

smooth inclined plane, and observe their motion. The force

effective in producing motion on the plane is ^ sin <p, where 0-

is the angle of the plane with the horizontal ; the space trav-

ersed in the time ^ is j = \gf sin 0. By observing s and t, the

value of^ may be obtained. The motion is so much less rapid

than that of a freely falling body tkat tolerably accurate ob-

servations can be made. Irregularities due to friction upon
the plane and the resistance of the air, however, greatly vitiate

any calculations based upon these observations. This method
was used by Galileo, who was the first to obtain a measure

of the acceleration due to the earth's attraction.

The most exact method for determining the value of g is

based upon observations of the oscillation of a pendu-

lum.

A pendulum may be defined as a heavy mass, or

bob, suspended from a rigid support, so that it can

oscillate about its position of equilibrium.

In the simple, or mathematical, pendulum, the bob
is assumed to be a material particle, and to be sus-

pended by a thread without weight. If the bob be
Fig. 27. stationary and acted on by gravity alone, the line of

the thread will be the direction of the force. If the bob be

withdrawn from the position of equilibrium (Fig. 27), it will be
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acted on by a force at right angles to the thread, in a direction

opposite that of the displacement, expressed hy — g sin 0,
where is the angle between the perpendicular and the new
position of the thread.

The force acting upon the bob at any point in the circle

of which the thread is radius, if it be released, and allowed

to swing in that circle, varies as the sine of the angle be-

tween the perpendicular and the radius drawn to that point.

If we make the oscillation so small that the arc may be sub-

stituted for its sine without sensible error, the force acting on

the bob varies as the displacement of the bob from the point

of equilibrium.

A body acted on by a force varying as the displacement of

the body from a fixed point will have a simple harmonic mo-

tion about its position of equilibrium.

Hence it follows that the oscillations of the pendulum are

symmetrical about the position of equilibrium. The bob will

have an amplitude on the one side of the vertical equal to that

which it has on the other, and the oscillation, once set up, will

continue forever unless modified by outside forces.

The importance of the pendulum as a means of determin-

ing the value of g consists in this : that, instead of observing

the space traversed by the bob in one second, we may observe

the number of oscillations made in any period of time, and de-

termine the time of one oscillation ; from this, and the length

of the pendulum, we can calculate the value of g. The errors

in the necessary observations and measurements are very slight

in comparison with those of any other method.

40. Formula for Simple Pendulum.—The formula con-

necting the time of oscillation with the value of g is obtained

as follows : The acceleration of the bob at any point in the

arc is, as we have seen, — g sin 0, or — gcp if the arc be very

small. The acceleration in a simple harmonic motion is

4.71' 2nt
-=i a cos —^-
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Since the bob has a simple harmonic motion, we may equate

these expressions : hence

g(p = -Y^a cos -y .

27Ct
But a cos —jT is the displacement of the point having the

simple harmonic motion, and is therefore equal to l<p, if / rep-

resent the length of the thread : hence

from which

V g

In this formula T' represents the time of a double oscillation.

It is customary to consider as a unit, the time of a single oscil-

lation, when the formula becomes

=
""sj-g- (24)

41. Physical Pendulum.—Any pendulum fulfilling the re-

quirements of the foregoing theory is, of course, unattainable

in practice. We may, however, calculate, from the known di-

mensions and mass of the portions of matter making up 'Cs\^ phy-

sicalpendulum, what would be the length of a simple pendulum
which would oscillate in the same time. It is clear that there

must be some point in every physical pendulum the distance

of which from the point of suspension is equal to the length of

the corresponding simple pendulum ; for the particles near the

point of suspension tend to oscillate more rapidly than those
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more remote, and the time of oscillation of the system, if it be
rigid, will be intermediate between the times of oscillation

which the particles nearest to, and most remote from, the point

-of suspension would have if they were oscillating freely. There
will, therefore, be some one particle of which the proper rate

of oscillation is the same as that of the whole pendulum. Its

distance from the point of suspension is the length sought.

In determinations of the value of g by observations upon
the time of oscillation of a pendulum, the length of the equiva-

lent simple pendulum may be known in either of two ways.

(i) The pendulum may be constructed in such a manner
that its moment of inertia and the position of its centre of

gravity may be calculated. From these data the required

length is readily obtained.

When the pendulum oscillates, each of its particles de-

scribes a simple harmonic motion, and passes through the

mid-point of its path at the time that the pendulum passes

through its position of equilibrium. The velocity of each par-

ticle at the mid-point of its path can therefore be expressed by

=-, where T is the period of a complete oscillation, and a

is an amplitude differing for each particle considered. Repre-

senting the distance of any particle from the axis of suspension

by r, and the greatest value of the angular displacement of the

pendulum by 0, we have a = r0. Hence the angular velocity

of each particle, and therefore of the pendulum, is expressed

by ™-- The kinetic energy of a body, rotating about an

axis with an angular velocity w, has been shown in § 36 to

00'

be expressed by 2mr''— . Substituting in this expression the

value obtained for the angular velocity of the pendulum, we

obtain i^mr' ^, as the expression for the kmetic energy of
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the pendulum at the lowest point of its arc. At this point the

pendulum possesses no potential energy. Its kinetic energy

at this point must therefore be equal to its potential energy

at the highest point of its arc, where it posesses no kinetic-

energy. If we represent byM the mass of the pendulum, and
by R the distance of the centre of gravity from the point of

suspension, R(t> represents the distance traversed by the centre

of gravity between the highest'and the lowest points of its arc,

and ^Mg(t> represents the average force acting on the centre of

gravity between those points to produce rotation. The poten-

tial energy of the pendulum at the highest point of its arc is,,

therefore, ^MRgcf^. Hence we have

whence

^=-\/^- (^5>

This is the time of oscillation of a simple pendulum of which

the length is ^„ . Therefore the moment of inertia of any

physical pendulum divided by the product of its mass into the
distance of its centre of gravity from the axis of suspension gives
the length of the equivalent simple pendulum. An axis paral-

lel to the axis of suspension, passing through the point on the
line joining the axis of suspension with the centre of gravi-

ty of the pendulum and distant -j^ from the axis of sus-

pension, is called the axis of oscillation.

A pendulum consisting of a heavy spherical bob suspended
by a cylindrical wire was used by Borda in his determinations.

of the value of ^. The moment of inertia and the centre of



MASS ATTRACTION. 75

vity of the system were easily calculated, and the length of

simple pendulum to which the system was equivalent was
s obtained.

(2) We may determine the length of the equivalent simple
idulum directly by observation. The method depends upon
principle that, if the axis of oscillation be taken as the

s of suspension, the time of oscillation will not vary. The
of of this principle is as follows :

Let rand /

—

r represent the distances from the centre

gravity to the axis of suspension and of oscillation re-

ctively, m the mass of the pendulum, and / its moment
inertia about its centre of gravity. Then, since the

ment of inertia about the axis of suspension is /+ mr', we
'e

mr

When the pendulum is reversed, we have

_ /+ m{l - ry
'~ m{l— r)

From the first equation we have /= mr{l—r), which

ue substituted in the second gives, after reduction,

= /; that is, the length of the equivalent simple pen- ^\

um, at^d consequently the time of oscillation when

pendulum swings about its axis of suspension, is the

le as that when it is reversed^ and swings about its

tner axis of oscillation.

A pendulum (Fig. 28) so constructed as to take

rantage of this principle was used by Kater in his

ermination of the value of g; and this form is known.

:onsequence, as Kater's pendulum.
o
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42. The Balance.—The comparison of masses is of "such

frequent occurrence in physical investigations that it is im-

portant to consider the theory of the balance and the methods

of using it.

To be of value the balance must be accurate and sensitive

;

that is, it must be in the position of eqiiilibrium when the

scale-pans contain equal masses, and it must move out of that

position on the addition to the mass in one pan of a very small

fraction of the original load. These conditions are attained

by the application of principles which have already been

developed.

The balance consists essentially of a regularly formed beam,

poised at the middle point of its length upon knife edges

which rest on agate planes. From each end of the beam is

hung a scale-pan in which the masses to be compared are

Fig. 29.

placed. Let O (Fig. 29) be the point of suspension of the

beam ; A,B, the points of suspension of the scale-pans ; C, the

centre of gravity of the beam, the weight of which is W.
Represent OA = OB by /, OC by d, and the angle OAB by a.

If the weight in the scale-pan at A be P, and that in the

one a.t B he P -f-/, where / is a small additional weight, the

beam will turn out of its original horizontal position, and as-

sume a new one. Let the angle COC„ through which it turns,

be designated by /3. Then the moments of force about O are

equal^ ; that is,

{P+p)l. cos («+ >«) = PI. cos {a-l3)J^Wd. sin ft ;
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from which we obtain, by expanding and transposing,

// cos a
*^" ^ = (2i'+/)/sin«+fr^- (2^>

The conditions of greatest sensitiveness are readily deduci-

ble from this equation. So long as cos a is less than unity, it

is evident that tan ft, and therefore /?, increases as the weight

2P of the load diminishes. As the angle a becomes less, the

value of /? also increases, until, when A, O, and B are in the

same straight line, it depends only on -^-, and is independ-
Wd

ent of the load. In this case tan ft increases as d, the distance

from the point of suspension to the centre of gravity of the

beam, diminishes, and as the weight of the beam W dimin-

ishes. To secure sensitiveness, therefore, the beam must be

as long and as light as is consistent with stiffness, the points

of suspension of the beam and of the scale-pans must be very

nearly in the same line, and the distance of the centre of

gravity from the point of suspension of the beam must be as

small as possible. Great length of beam, and near coincidence

of the centre of gravity with the axis, are, however, incon-

sistent with rapidity of action. The purpose for which the

balance is to be used must determine the extent to which these

conditions of sensitiveness shall be carried.

Accuracy is secured by making the arms of the beam of

equal length, and so that they will perfectly balance, and by
attaching scale-pans of equal weight at equal distances from

the centre of the beam.

In the balances usually employed in physical and chemical

investigations, various means of adjustment are provided, by

means of which all the required conditions may be secured.

The beam is poised on knife edges ; and the adjustment of its

centre of gravity is made by changing the position of a nut
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which moves on a screw, placed vertically, directly above the

point of suspension. Perfect equality in the moments of force

due to the two arms of the beam is secured by a similar hori-

zontal screw and nut placed at one end of the. beam. The
beam is a flat rhombus of brass, large portions of which are

cut out so as to make it as light as possible. The knife edge

on which the beam rests, and those upon which the scale-pans

hang, are arranged so that, with a medium load, they are all

nearly in the same line. A long pointer attached to the beam
moves before a scale, and serves to indicate the deviation of

the beam from the position of equilibrium. If the balance be

accurately made and perfectly adjusted, and equal weights

placed in the scale-pans, the pointer will remain at rest, or will

oscillate through distances regularly diminishing on each side

of the zero of the scale.

If the weight of a body is to be determined, it is placed in

one scale-pan, and known weights are placed in the other un-

til the balance is in equilibrium or nearly so. The final deter-

mination of the exact weight of the body is then made by one

of three methods : we may continue to add very small weights

until equilibrium is established ; or we may observe the devia-

tion of the pointer from the zero of the scale, and, by a table

prepared empirically, determine the excess of one weight over

the other ; or we may place a known weight at such a point

on a graduated bar attached to the beam that equilibrium is

established, and find what its value is, in terms of weight

placed in the scale-pan, by the relation between the length of

the arm of the beam and the distance of the weight from the

middle point of the beam.

If the balance be not accurately constructed, we can, never-

theless, obtain an accurate value of the weight desired. The
method employed is known as Borda's method of double
weighing. The body to be weighed is placed in one scale-pan,

and balanced with fine shot or sand placed in the other. It is
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n replaced by known weights till equilibrium is again estab-

ed. It is manifest that the replacing weights represent

weight of the body.

If the error of the balance consist in the unequal length of

arms of the beam, the true weight of a body may be ob-

led by weighing it first in one scale-pan and then in the

ler. The geometrical mean of the two values is the true

ight ; for let l^ and /„ represent the lengths of the two arms of

I balance, P the true weight, and P^ and P, the values of the

ights placed in the pans at the extremities of the arms of

gths /i and /„ which balance it. Then Pl^ = PJ^ and P/, =
. : from which

P= VP^,.

43. Density of the Earth.—One of the most interesting

)blems connected with the physical aspect of gravitation is

: determination of the density of the earth. It has been

acked in several ways, each of which is worthy of consider-

on.

The first successful determination of the earth's density

s based upon experiments made in I774by Maskelyne. He
served the deflection from the vertical of a plumb-line sus-

[ided near the mountain Schehallien in Scotland. He then

lermined the density of the mountain by the specific gravity

specimens of earth and rock from various parts of it, and

culated the ratio of the volume of the mountain to that of

; earth. From these data the mean specific gravity of the

th was determined to be about 4.7.

The next results were obtained from the experiments of

vendish, in 1 798, with the torsion balance already described,

.e density, volume, and attraction of the leaden balls being

own, the density of the earth could easily be obtained. The

ue obtained by Cavendish was about 5.5.
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Another method, employed by Carlini in 1824, depends

upon the use of the pendulum. The time of the oscillation of

a pendulum at the sea-level being known, the pendulum is

carried to the top of some high mountain, and its time of os-

cillation again observed. The value ofg as deduced from this

observation will, of course, be less than that obtained by the

observation at the sea-level. It will not, however, be as much
less as it would be if the change depended only on the in-

creased distance from the centre of the earth. The discrep-

ancy is due to the attraction of the mountain, which can,

therefore, be calculated, and the calculations completed as in

Maskelyne's experiment. The value obtained by Carlini by
this method was about 4.8.

A fourth method, due to Airy, and employed by him in

1854, consists in observing the time of oscillation of a pendulum
at the bottom of a deep mine. By § 29, (i), it appears that

the attraction of a spherical shell of earth the thickness of which
is the depth of the mine vanishes. The mean density of the

earth may, therefore, be determined by the discrepancy between
the values of g at the bottom of the mine and at the surface.

Still another method, used by Jolly, consists in determining

by means of a delicate balance the increase in weight of a
small mass of lead when a large leaden block is brought
beneath it. Jolly's results were very consistent and give as

the earth's density the value 5.69.

These methods have yielded results varying from that ob-

tained by Airy, who stated the mean specific gravity to be
6.623, to that of Maskelyne, who obtained 4.7. The most
elaborate experiments, by Cornu and Bailie, by the method of

Cavendish, gave as the value 5.56. This is probably not far

from the truth.

When the density of the earth is known, we may calculate

from it the value of the constant of mass attraction, that is, the
attraction between two unit masses at unit distance apart.
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Representing by D the earth's mean density, by R the earth's

mean radius, and by k the constant of attraction, the mass

of the earth is expressed by ^TtR'D. Since by" § 29, (2), the at-

traction of a sphere is inversely as the square of the distance

from its centre, the attraction of the earth on a gram at a point

on its surface, or the weight of one gram, is expressed by

R'D
g = ^Tt—^k = \nRDk. itR is twice the length of the earth's

quadrant, or 2 X 10° centimetres. The value of g at latitude

40° is 980.11, and from the results of Cornu and Bailie we may
set D equal to 5.56. With these data we obtain k equal to

0.000000066 dynes.

44. Projectiles.—When a body is projected in any direc-

tion near the earth's surface, it follows, in general, a curved -

path. If the lines of force be considered as radiating from the

earth's centre, this path will be, by Proposition III, §37, an

ellipse, with one focus at the earth's centre. If the path pursued

be so small that the lines may be considered parallel, the centre

of force is conceived of as removed to an infinite distance, and

the curve becomes a parabola.

The fact that ordinary projectiles follow a parabolic path

was first shown by Galileo, as a deduction from the principle

which he estabhshed,—that a constant force produces a uni-

form acceleration. The proof is as follows : Suppose
, the

body to be projected from the point O taken

as origin, in the direction of the axis OY
(Fig. 30), making any angle <p with OX, a

vertical axis, and to move with a velocity

y
V ^ —. Owing to the accelerating effect of

gravity, it also moves in the, vertical direction OX with a

velocity v, = gt. At any time t it will have traversed in

the direction OY a space jy — vt, and in the direction OX a

space X = \gf. The co-ordinates of the position of the body
6
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at any time t are, therefore, y—vt and x = \gf. The equa-

2'v'x
tion connecting x and^ becomesy =

, which is the equa-

tion of a parabola referred to the diameter OX and the tan-

gent Y. When the body is projected horizontally, the vertex

of the parabola is at the ori^gin of the motion. The body be-

gins to approach the earth from the start, and reaches it at

the same time that it would if allowed to fall freely.

One special case of importance in the consideration of the

paths of projectiles is that in which the body moves in a circle.

It is obvious, that, to bring about this result, the body must

be projected horizontally with such an initial velocity that the

acceleration due to the earth's attraction shall be precisely

equal to the acceleration toward the centre which is necessary

in order, that the body should move in a circle (Proposition

II, § 37). Hence we must have

mv' mM

where m andM are the masses of the body and the earth re-

spectively, R is the earth's radius,, and k the constant of attrac-

tion. Now V, the velocity of the body, equals

2nR
T'

where T is the time of one complete revolution, and

M= ^TtR'D,

where D is the earth's mean density. Substituting these val-
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ues, we obtain

from which

in

The result shows that the periodic time of any small body
revolving about a sphere, and infinitely near its surface, is a

function of the density only, and does not depend on the radius

. of the sphere.

Upon this principle Maxwell proposed, as an absolute unit

of time, the time of revolution of a small satellite revolving in-

finitely near the surface of a globe of pure water at its maxi-

mum density.



CHAPTER III.

MOLECULAR MECHANICS.

CONSTITUTION OF MATTER.

45. General Properties of Matter.—Besides the proper-

ties already defined in § 3 as characteristic and essential, we
find that all bodies possess the properties of conlpressibility

and divisibility.

Compressibility.—All bodies change in volume by change of

pressure and temperature. If a body of a given volume be
subjected to pressure, it will return to its original volume whea
the pressure is removed, provided the pressure has not been

too great. This property of assuming its original volume is

called elasticity. The property of changing volume by the

application of heat is sometimes specially called dilatability.

Divisibility.—Any body of sensible magnitude may, by
mechanical means, be divided, and each of its parts may again

be subdivided ; and the process may be continued till the re-

sulting particles become so minute that we are no longer able

to recognize them, even when assisted by the most perfect ap-

pliances of the microscope. If the body be one that can be

dissolved, it may be put in solution, and this may be greatly

diluted ; and in some cases the body may be detected by the

color which it imparts to the diluent, even when constituting

so small a proportion as one one-hundred-millionth part of the

solution.

46. Molecules.—We are not, however, at liberty to con-

clude that matter is infinitely divisible. The fact, established
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by observation, that bodies are impenetrable, and the one just

noted, that they are also compressible, as well as other consid-

erations, to be adduced later, lead to the opposite conclusion.

' To explain the coexistence of these properties, we are com-

pelled to assume that bodies are composec^ of extremely small

portions of matter, indivisible without destroying their identity,

called molecules, and that these molecules are separated by in-

terstitiaVspaces relatively larger, which are occupied by a highly

elastic medium called the ether.

These molecules can be divided only by chemical means.

The resulting subdivisions are called atoms. The atom, how-

ever, cannot exist in a free state. The molecule is the physi-

cal unit of matter, while the atom is the chemical unit.

47. Composition of Bodies.—It has just been said that

atoms cannot exist in a free state. They are always combined

with others, either of the same kind, forming simple substances,

or of dissimilar kinds, forming compound substances.

There are about sixty-seven substances now known which

cannot, in the present state of our knowledge, be decomposed,

<3X made to yield anything simpler than themselves. We
therefore call them simple substances, elements, or, if we desire

to avoid expressing any theory concerning them, radicals. It

is not improbable that some of these will yet be divided,

perhaps all of them. We can call them elements, then, only

provisionally.

48. States of Aggregation.—Bodies exist in three states,

—the solid, the liquid, and the gaseous. In the solid state the

form and volume of the body are both definite. In the liquid

state ithe volume only is definite. In the gaseous state neither
,

form nor volume is -definite.

Many substances may, under proper conditions, assume

either of these three states of aggregation; and some sub-

stances, as, for example, water, may exist in the three states

under the same general conditions.
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It is proper to add, however, that there is no such sharp

line of distinction between the three states of matter as our

definitions imply. Bodies present all gradations of aggrega-

tion between the extreme conditions of solid and gas ; and the

same substance, in passing from one state to the other, often

presents all these gradations.

49. Structure of Solids.—With the exception of organized

bodies, all solids may be divided into two classes. The bodies

of one class are characterized by more or less regularity of

form, which is called crystalline ; those of the other class, ex-

hibiting no such regularity, are called amorphous. For the

formation of crystals a certain amount of freedom of motion

of the molecules is necessary. Such freedom of motion is

found in the gaseous and liquid states ; and when crystallizable

bodies pass slowly from these to the solid state, crystallization

usually occurs. It may also occur in some solids spontaneously,,

or in consequence of agitation of the molecules by mechanical-

means, such as friction or percussion. Crystallizable bodies,

are called crystalloids.

Some amorphous bodies cannot, under any circumstances,,

assume the crystalline form. They are called colloids.

50. Crystal Systems.—Crystals are arranged by mineralo-

gists in six systems.

In the first, or Isometric, system, all the forms are referred,

to three equal axes at right angles. The system includes the

cube, the regular octahedron, and the rhombic dodecahedron.

In the second, or Dimetric, system, all the forms are referred

to a system of three rectangular axes, of which only two are.

equal.

In the third, or Hexagonal, system, the forms are referred

to four axes, of which three- are equal, lie in one plane, and
1

cross each other at angles of 60°. The fourth axis is at right

angles to the plane of the other three, and passes through their

common intersection.
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The fourth, or Orthorhombic, system is characterized by-

three rectangular axes of unequal length.

In the fifth, or Monoclinic, system, the three axes are un-

equal. One of them is at right angles to the plane of the

other two. The angles which these two make with each other,

as well as the relative lengths of the axes, vary greatly for

different substances.

In the sixth, or Triclinic, system, the three axes are oblique

to each other, and unequal in length.

51. Forces determining the Structure of Bodies.—In

view of what precedes, it is necessary to assume the existence

of certain forces other than the mass attraction considered in

§ 38 acting between the molecules of matter. These forces

seem to act only within very small or insensible distances, and

vary with the character of the molecule. They are hence

called molecular forces. In liquids and solids, there must be a

force of the nature of attraction, holding the molecules to-

gether, and a force equivalent to repulsion, preventing actual

contact. The attractive force is called cohesion when it unites

molecules of the same kind, and adhesion when it unites mole-

cules of different kinds. The repulsive force is probably a

manifestation of that motion of the molecules which constitutes

heat. In gases this motion is so great as to carry the molecules

beyond the limit of their mutual molecular attractions : thus,

the apparent repulsion prevails, and the gas only ceases ex-

panding when this repulsion is balanced by other forces.

52, Structure of the Molecule.—The facts brought to

light in the study of crystals compel us to ascribe a structural

form to the molecule, determining special points of application

for the molecular forces. From this results the arrangement

of molecules, T^hich have the requisite freedom of motion, into

regular crystalline forms.
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FRICTION.

53. General Statements.—When the surface of one body

is made to move over the surface of another, a resistance to

the motion is set up. This resistance is said to be due to fric-

tion between the two bodies. It is most marked when the sur-

faces of two solids move over one another. It exists, however,

also between the surfaces of a soHd and of a liquid or a gas, and

between the surfaces of contiguous liquids or gases. When the

parts of a body move among themselves, there is a similar re-

sistance to the motion, which is ascribed to friction among the

molecules of the body. This internal friction is called viscosity.

54. Laws of Friction.—Owing to our ignorance of the ar-

rangement and behavior of molecules, we cannot form a theory

of friction based upon mechanical, principles. The laws which

have been found are almost entirely experimental, and are only

approximately true even in the cases in which they apply.

It was found by Coulomb that, when one solid slides- over

another, the resistance to the motion is proportional to the

pressure normal to the surfaces of contact, and is independent

of the area of the surfaces and of the velocity with which the

moving body slides over the other. It depends upon the na-

ture of the bodies, and the character of the surfaces of contact.

The ratio of the force required to keep the moving body in

uniform motion to the force acting upon it normal to the sur-

faces of contact is called; the coefficient offriction.

It was shown experimentally by Poiseuille that the rate of

outflow of a liquid from a vessel through a long straight tube

of very small diameter is proportional directly to the difference

in pressure in the liquid at the two ends of the tube, to the

fourth power of the radius of the tube, and inversely to the

length of the tube. The flow of hquid under such conditions

can be determined by mathematical analysis, and it is found
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of being elevated, is depressed. If we change the tube for one

of smaller bore, the water rises higher and the mercury sinks

lower within it; but the rise or depression outside the 'tube

remains the same. If we immerse the same tube in different

liquids, we find that the heights to which they ascend vary for

the different liquids. If, instead of changing the diameter, we
change the thickness of the wall of the tube, no variation

occurs in the amount of elevation or depression ; and, finally,

the rise or depression in the tube varies for any one liquid with

its temperature.

57. Law of Force assumed.—It is found that a force

such as is given by the law of mass attraction is not sufficient

to produce these phenomena. They can, however, be ex-

plained if we assume an additional a,ttraction between the

molecules, such as we have already done. The expression,

then, of the stress between two molecules m. and nt', at dis-

tance r, becomes

fnifi'F=—— -\- mm! f{f).

The only law which it is necessary to assign to the function

of r in the second term is, that it is very great at insensible

distances, diminishes rapidly' as r increases, and vanishes while

r, though measurable, is still a very small quantity. For adja-

cent molecules this molecular attraction iS so much greater

than the mass attraction, that it is customary, in the discussion

of capillary phenomena, to omit the term —— from the ex-

pression for the force. The distance through which this at-

traction is appreciable is often called the radius of mol^ecular

action, and is denoted by the symbol e. It is a very small dis-

tance, but is assumed to be much greater than the distance

between adjacent molecules.
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58. Methods of Development.—The different methods

which have been employed to deduce, fron;i this assumed

attraction, results which could be submitted to experimental

verification, are worthy of notice. They are distinct, though

compatible with one another. Young was the first to treat the

subject satisfactorily, though others had given partial and im-

perfect demonstrations before him. He showed that a liquid

can be dealt with as if it were covered at the bounding surface

with a stretched membrane, in which is a constant tension

tending to contract it. From this basis he proceeded to

deduce some of the most important of the experimental laws.

Laplace, proceeding' directly from the law of the attraction

which we have already given, considered the attraction of a

mass of liquid on a filament of the liquid terminating at the

surface, and obtained an expression for the pressure within the

mass at the interior end of the filament. He also was able,

not only to account for already observed laws, but to predict,

in at least one instance, a . subsequently verified result. Some

years later. Gauss, dissatisfied with Laplace's assumption, with-

out a priori demonstration, of a known experimental fact,

treated the subject from the basis of the principle of virtual

velocities, which in this case is the equivalent of that of the

conservation of energy. He proved, that, if any change be

made in the form of a hquid mass, the work done or the energy

recovered is proportional to the change of surface, and hence

deduced a proof of the fact which Laplace assumed, and also

an expression for the pressure within the mass of a liquid

identical with his. For purposes of elementary treatment the

earliest method is still the best. We shall accordingly employ

the idea of surface tension, after having shown that it may be

obtained from our first hypothesis.

50. Surface Tension.—Let us consider any liquid bounded

by a plane surface, of which the line mn (Fig. 31) is the trace,

and let the line m'n' be the trace of a parallel plane at a
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distance e from the plane of mn. The liquid is then divided

into two parts by the plane of m'n',—the general mass of the

liquid, and a shell of thickness e between the two planes.

Then, if we imagine a plane passed through any point within the

general mass, it is clear that the attraction of the molecules on

opposite sides of that plane will give rise to a pressure normal

to it, which will be constant for every direction of the plane

;

for the number of molecules now acting on the point is the

same in all directions. Let, however, the point chosen be P,

situated within the shell. With /* as a centre, and with radius e,

describe a sphere. Now, it is evident that the number of mole-

m
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60. Energy and Surface Tension.—We may here show
how the energy of the liquid is related to the surface tension.

It is plain, that, if the molecules, which by their mutual attrac-

tions give rise to the surface tension, be forced apart by the

extrusion from, the mass into the shell of a sheet of molecules

along a plane normal to the surface, work will be done as the

surface is increased. In every system free to move, move-
ments will occur until the potential energy becomes a min-

imum: hence every free liquid moves so that its bounding
surface becomes as small as possible; that is, it assumes a

spherical form. This is exemplified in falling drops of water
and in globules of mercury, and can be shown on a large scale

by a method soon to be described. If we call the potential

energy lost by a diminution in the surface of one unit, the

surface energy per unit surface, we can show that it is numeri-

cally equal to the surface tension across one unit of length.

Suppose a thin film of liquid to be stretched on a frame
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normal to A, the value of which is T for every unit of length, we
have again for the work done during the movement of A, Tab.

From these expressions we obtain at once E = T; that is, the

numerical value of the surface energy per unit of surface is

equal to that of the tension in the surface, normal to any line

in it, per unit of length of that line.

6i. Equation of Capillarity.—The surface tension intro-

duces modifications in the pressure within the liquid mass

(§ 85 seq.) depending upon the curvature of

the surface. Consider any infinitesimal rect-

angle (Fig. 33) on the surface. Let the

length of its sides be represented by s and s^

respectively, and the radii of curvature of

those sides by R and R,. Also let and 0,
represent the angles in circular measure sub-

tended by the sides from their respective

centres of curvature. Now, a tension T for

every unit of length acts normal to s and
Fig. 33. tangent to the surface. The total tension

Across s is then Ts ; and if this tension be resolved parallel and
nornial to the normal at the point P, the centre of the rect-

angle, we obtain for the parallel component 7>sin— , or,

since ^, is a very small angle, Ts— or Ts—^. The opposite

side gives a similar component ; the side s^ and the side oppo-

site it give each a .component Ts,—^. The total force along

the normal at P is then

and since ss^ is the area of the infinitesimal rectangle, the force
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or pressure normal to the surface at P referred to unit of sur-

face is

^U, + Rl'

From a theorem given by Euler we know that the sum
1,1. . , . . , ,^+ "n IS constant at any pomt for any position of the rect-

angular normal plane sections ; hence the expression we have

obtained fully represents the pressure at P.

If the surface be convex, the radii of curvature are positive,

and the pressure is directed towards the liquid ; if concave,,

they are negative, and the pressure is directed outwards. This

pressure is to be added to the constant molecular pressure

which we have already seen exists everywhere in the mass. If

we denote this constant molecular pressure by K, the ex-

pression for the total pressure within the mass is

^+^fe + i)R, ^ R)

Tvhere the convention with regard to the signs of R, and R
must be understood. For a plane surface, the radii of curva-

ture are infinite, and the pressure under such a surface reduces

toK.
62. Angles of Contact.—Many of the capillary phenom-

ena appear when different liquids, or liquids and solids, are

brought in contact with one another. It becomes, therefore,

necessary to know the relations of the surface tensions and the

angles of contact. They are determined by the following

considerations :

Consider first the case when three liquids meet along a line.
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Fig. 34.

Let O represent the. point where this line cuts a plane drawn

at right angles to it. Then the ten-

sion Tab of the surface of separation

of the liquid a from the liquid b,

acting nbrmal to this line, is coun-

terbalanced by the tensions T^c and

The of the surfaces of separation of

a and c, b and c. These tensions are

always the same for the three liquids

under similar conditions of temperature and purity. Knowing
the value of the tensions, the angles which they make with *

one another are determined at once by the parallelogram of

forces ; and these angles are always constant.

Similar relations arise if one of the liquids- be replaced by a

gas. Indeed, some experiments by Bosscha indicate that

capillary phenomena occur at surfaces of separation between
gases. We need, therefore, in "the subsequent discussions,

make no distinction between gases and liquids, and may use

the general term fluids.

If Tab be greater than the sum of Tac and Tbc, the angle be-

tween Tac and Tbc becomes zero, and the

fluid c spreads itself out in a thin sheet

between a and b. Thus, if a drop of oil

be placed on water, the tension of the

surface of separation between the air and

water is greater than the sum of the ten-

sions of the surfaces between the air and

oil, and between the oil and water ; hence

the drop of oil spreads out over the water

until it becomes almost indefinitely thin.

In the case of two fluids in contact with

a plane solid (Fig. 35), it is evident that

when the system is in equilibrium, the

surface of separation between the fluids a and b, making th&

angle with the solid C, is

Fig. 35.
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Tac = Tic + Tab COS d.

The angle of contact is then determined by the equation

cos d = J- ae 'be

'ab

If Tac be greater than T^b + Tbc, the equation gives an im-

possible value for cos d. In this case the angle becomes

evanescent, the fluid d spreads itself out, and wets the whole

surface of the solid. In other cases the value of 6 is finite

and constant for the same substances. Thus, a droj^of water

placed on a horizontal glass plate will spread itself over the

whole plate ; while a small quantity of mercury placed on the
'

same plate will gather together into a drop, the edges of which

make a constant angle with the surface.

63. Plateau's Experiments.—The preceding principles

will enable us to explain a few of the most important experi-

mental facts of capillarity.

A series of interesting results was obtained by Plateau from .

the examination of the behavior of a mass of liquid removed

from the action of gravity. His method of procedure was to

place a mass of oil in a mixture of alcohol and water, carefully

mixed so as to have the same specific gravity as the oil. The
oil then had no tendency to move as a mass, and was free to

arrange itself entirely under the action of the molecular forces.

Referring to the equation of Laplace, already obtained, it

is evident that equilibrium can exist only when the sum

(-5- -|- -Q- ) is constant for every point on the surface. This is-

manifestly a property of the sphere, and is true of no other

finite surface. Plateau found, accordingly, that the freely

floating mass at once assumed a spherical form. This result

we had previously reached by another method. If a solid

7
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body—for instance, a wire frame—be introduced into the mass

of oil, of such a size as to reach the surface, the oil clings to it,

and there is a break in the continuity of the surface at the

points of contact. Each of the portions of the surface divided

from the others by the . solid -then takes a form which fulfils

the condition already laid, down, that (-5- + ^ j equals a con-

stant. Plateau immersed a wire ring in the mass of oil. So
long as the ring nowhere reached the . surface, the mass re-

mained spherical. On withdrawing a portion of the oil with a

syringe, that which was left took the form of two equal

calottes, o» sections of spheres, forming a double convex lens.

A mass of oil, filling a short, wide tube, projected from it at

either end in a similar section of a sphere. As the oil was

removed, the two end surfaces became less curved, then plane,

and finally concave.

Plateau also obtained portions of other figures which fulfil

the required condition. For example, a mass of oil was made
to surround two rings placed at a short distance from one

another. Portions of the oil were then gradually withdrawn,

when two spherical calottes formed, one at each ring, and the

mass between the rings became a right cylinder. It is evident

.that the cylinder fulfils the required condition for every point

on its surface.

t Plateau also studied the behavior of films. He devised a

miJJture of soap and glycerine,, which formed very tough and

durable films ; and he experimented with them in air. Such

films are so light that the action of gravity on them may be

neglected in comparison with that of the surface tension. If

the parts of the frame upon which the film is stretched be all

in one plane, the film will manifestly lie in that plane. When,

however, the frame is constructed so that its parts mark the

edges of any geometrical volume, the films which are taken up

by it often meet. Any three films thus meeting so arrange



<4] MOLECULAR MECHANICS. 99

themselves as to make angles of 120° with one another. This

follows as a consequence of the proposition which has already

been given to determine the equilibrium of surfaces of separa-

tion meeting along a line. If four or more films meet, they

always meet at a point.

Plateau also measured the pressure of air in a soap-bubble,

and found that it differed from the external pressure by an

amount which varied inversely as the radius of the bubble.

This follows at once from Laplace's equation. This measure-

ment also gives us a means of determining the surface tension

;

for, from Laplace's equation, the pressure inwards, due to the

2
outer surface, is TV, and the pressure in the same direction

,2
-due to the inner surface is also TV, for the film is so thin

that we may neglect the difference in the radii of curvature of

the two surfaces : hence the total pressure inwards isf ; and

if this be measured by a manometer, we can obtain the value
.

of T.

64. Liquids influenced by Gravity.—Passing now to con-

sider liquid masses acted on by gravity, we shall treat only a

few of the most important cases.

If a glass tube having a

narrow bore be immersed

perpendicularly in water, the

water rises in the tube to a

height inversely proportional

to the diameter of the tube.

This law is known as JuritCs

law.
———

Let Fig. 36 represent the

section of a tube of radius r ^'°' s^-

immersed in a liquid, the surface of which makes an angle

^ ^
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with the wall. Then if T be the surface tension of the liquid,

the tension acting upward is the component of this surface

tension parallel to the wall, exdrted all around the circumfer-

ence of the tube. This is expressed by

2nrTco% 6.

This force, -for each unit area of the tube, is

27trTcos d

Tir'

The downward force, at the level of the free surface, making
equilibrium with this, is due to the weight of the liquid column

(§86). If we neglect the weight of the meniscus, this force

per unit area, or the pressure, is expressed by hdg, where h is.

the height of the column and d the density of the liquid. We-
have, accordingly, since the column is in equilibrium, '

-^,Tcos 8 = Mg;

whence

2T cos 9
h

rdg '

and the height is inversely as the radius of the tube.

If the liquid rise between two parallel plates of length /,

separated by a distance r, the upward force per unit area is

2/
given by the expression ^T'cos ^, and the downward pressure-

by hdg; whence

, _ 2 Tcos
~ rdg '
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and the height to which the liquid will rise between two such

plates is equal to that to which it will rise in a tube the radius

of which is equal to the distance between the plates.

If the two plates are inclined to one another so as to touch

along one vertical edge, the elevated surface takes the form of

a rectangular hyperbola ; for let the line of contact of the

plates be taken as the axis of ordinates, and a line drawn

in the plane of the free surface of the liquid as the axis of

abscissas, the elevation corresponding to each abscissa is in-

versely as the distance between the plates at that point, and

the elevations are therefore inversely as the abscissas : hence

the product of any abscissa by its corresponding ordinate is a

constant. The extremities of the ordinates then mark out a

rectangular hyperbola referred to its asymptotes.

65. Liquid Drops in Capillary Tubes.—When a drop of

liquid is placed in a conical tube, it moves, if the surfaces are

•concave, towards the smaller,

end ; if convex, towards the

larger end. The explanation

of these movements follows

readily from the foregoing

results. In case the surfaces

are concave, letting d .(Fig. 37) be the angle of contact and a

the angle of inclination of the wall of the tube to the axis, r

and r, the radii of the tube at the extremities of the drop, r

being the smaller of the two, then the expressions for the com-

ponents of the tensions parallel with the axis acting in both

cases outwards, are respectively

Fig. 37.

2'JtrT

Tff
COS {Q — a),

and

-V COS (61-1- a).
Tcr:
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Of these two exprdssions the former is manifestly greater than

the latter: hence the tendency of the drop is to move towards
the smaller end of the tube.

If we assume that the concave surfaces are portions of

spheres, of which R and R^ are the respective radii of curva-

ture, it follows that r = R cos {0 — a), and r^ = R^ cos {6-\- a);

iT 2T
hence the expressions for the tensions become -g- and -5-'

These are the values of the tensions as determined by Laplace's;

equation, and the movements of the drop might have been in-

ferred directly from this equation by making the same assump-
tion.

If a drop of water be ifitroduced into a cyHndrical capillary

tube of glass, and if the air on the two ends of the drop have
unequal pressures, the concavities thereby become unequal,

the one on the side of the greater pressure presenting the
greater concavity. The drop so circumstanced offers a resist-

ance to this pressure ; and it may, if the pressure be not too

great, entirely counterbalance it. It is also evident, that, if

several such drops be introduced successively, with intervening

air-spaces, the pressure which they can unitedly sustain is equal

to that which one can sustain multiplied by their number.

Jamin found that, with a tube containing a large number of

drops, a pressure of three atmospheres was maintained without
diminution for fifteen days.

66. Movements of Solids.—In certain cases the action of

the capillary forces produces movements in solid bodies partially

immersed in a liquid. For example, if two plates, which are

both either wetted or not wetted by the liquid, bfe partially

immersed vertically, and brought so near together that the rise

or depression of the liquid due to the capillary action begins,

then the plates will move towards one another. In either case

tills movement is explained by the inequality of pressure on
the two sides of each plate. When the liquid rises between
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the plates, the pressure is zero at that point in the column
which lie's in the same plane as the free external surface. At
every internal point above this the molecules gf the liquid are

in a state of negative pressure or tension, and the plates are

consequently drawn together. When the liquid is depressed

between the plates, they are pressed together by the external

liquid above the plane in which the top of the column between

the plates lies. When one of the plates is wetted by the liquid

arid the other not, the plates move apart. This is explained

by noting, that, if the plates be brought near together, the

convex surface at the one will meet the concave surface at the

other, and there will be a consequent diminution in both the

elevation and the depression at the inner surfaces of the plates.

The elevation and depression at the outer surfaces remaining

unchanged, there will result a pull outwards on the wetted plate

and a pressure outwards on the plate which is not wetted ; and

they will consequently move apart. Laplace showed,* howeyer,

as the result of an extended discussion, that, though seeming

repulsion exists between two plates such as we have just con-

sidered, yet, if the distance between the plates be diminished

beyond a certain value, this repulsion changes to an attraction.

This prediction has been completely verified by the most care-

ful experiments.

67. Porous Bodies.—Porous bodies may be considered as

assemblages of more or less irregular capillary tubes- Thus the

explanation of many natural phenomena—as the wetting of a

sponge, the rise of the oil in the wick of a lamp—follows

directly from the preceding discussion.

DIFFUSION.

68. Solution and Absorption.—Many solid bodies, im-

jnersed in a liquid, after a while disappear as solids, and are

taken up by the liquid. This process is called solution. The
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quantity of any body which a unit quantity of a given liquid

will dissolve at a given temperature, is called its solubility in

that liquid at that temperature. The solubility of a given

solid varies greatly for different liquids, in many cases being so

small as to be inappreciable.

Gases are also taken into solution by liquids. The process

is usually called absorption. The quantity of gas dissolved in'

any liquid depends upon the temperature, and varies directly

with the pressure. The solubility of any gas at a given

temperature and at standard pressure is called its coefficient of
absorption at that temperature.

Gases, in general, adhere strongly to the surfaces of solids

with which they are in contact. This adhesion is so great, that

the gases are sometimes condensed so as to form a dense layer

which probably penetrates to some depth below the surface of

the solid. The process is called the absorption of gases by
solids. When the solid is porous, its exposed surface is greatly

extended, and hence much larger quantities of gas are condensed

on it than would otherwise be the case. When this condensa-

tion occurs there is in general a rise of temperature which may
be so great as to raise the solid to incandescence. Thus, for

example, spongy platinum, placed in a mixture of oxygen and
hydrogen, becomes so heated as to inflame it.

69. Free Diffusion of Liquids.—When two liquids which

are miscible are so brought together in a common vessel that

the heavier is at the bottom and the lighter rests upon it in a

well-defined layer, it is found that after a time, even though no
agitation occur, they become uniformly mixed. Molecules of

the heavier liquid make their way upwards through the lighter

;

while those of the lighter make their way downwards through

the heavier, in apparent opposition to gravitation. Diffusion

is the name which is employed to designate this phenomenon
and others of a similar nature.

When one of the liquids is colored,—as, for example,
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solution of cupric sulphate,—while the other is colorless, the
progress of the experiment may easily be watched and noted.

When both liquids are colorless, small glass spheres, adjusted

and sealed so as to have different but determinate specific

gravities between those of the liqui'ds employed, may be placed

in the vessel used in the experiment, and will show by their

positions the degree of diffusion which has occurred at any
given time.

70. Coefficient of Diffusion.—Experiment shows that the

-amount of a salt, in solution which at a given temperature

passes, in unit time,, through unit area of a horizontal surface,

depends upon the nature of the salt and the rate of change of

concentration at that surface,—that is, the quantity of a salt

that passes a given horizontal plane in unit time is kCA, where

A is the area, C the rate of change of concentration, and k a

coeflScient that depends upon the nature of the substance.

By rate of change pf concentration is meant the difference in the

quantities of salt in solution measured in grams per cubic

centimetre, at two horizontal planes one centimetre apart,

supposing the concentration to diminish uniformly from one

to the other. It is plain, that, if C and A in the above expres-

sion be each equal to unity, the quantity of salt passing in

unit time is k. The quantity k, called the coefficient of diffu-

sion, is, therefore, the quantity of salt that passes in unit time

through unit area of a horizontal plane when the difference of

concentration is unity. Coefficients of diffusion increase with

the temperature, and are found not to be entirely independent

of the degree of concentration.

As implied above, the units of mass and length employed

in these measurements are respectively the gram and the centi-

metre ; but, since in most cases the quantity of salt that diffuses

in one second is extremely small, it is usual to emp^loy the day

as the unit time.
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71. Diffusion through Porous Bodies.—It was found by

Graham that diffusion takes place through porous solids, such,

as unglazed earthenware or plaster, almost as though the

liquids were in direct contact, and that a very considerable,

difference of pressure can Be established between the two faces,

of the porous body while the rate of diffusion remains nearly-

constant.

72. Diffusion through Membranes.—If the membrane
through which diffusion occurs be of a type represented by ani-

mal or vegetable tissue, the resulting phenomena, though in

some respects similar, are subject to quite different laws. Col-

loid substances pass through the membrane very slowly, while

crystalloid substances pass more freely. It is to be noted

that the membrane is not a mere passive medium, as is the

case with the porous substances already considered, but takes,

an active part in the process ; and consequently one of the

liquids frequently passes into the other more rapidly than would

be the case if the surfaces of the liquids were directly in con-

tact.

An explanation of these ' facts follows if we suppose that

diffusion of a liquid through a continuous membrane can occur

only whenthe liquid is capable of temporarily uniting with the

membrane, and forming a part of it. Diffusion would then oc-

cur by the union of the liquid with the membrane on one face,,

and the setting free of an equal portion on the other.

If the membrane separate two crystalloids, it often happens-

that both substances pass through, but at different rates. In

accordance with the usage of Dutrochet, we may say there is

endosmose of the liquid, which passes more rapidly to the other

liquid, and exosmose of the latter to the former. The whole
process is frequently called osmosis. If the membrane be
stretched over th6 end of a tube, into which the more rapid

current sets, and the tube be placed in a vertical position, the

liquid will rise in' the tube until a very considerable pressure is.
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attained. Dutrochet called such an instrument an endosmo-

meter.

Graham made use of a similar instrument, which he called

an osmometer, by means of which he studied, not only the ac-

tion of porous substances, such as are mentioned above, but

al^o that of various organic tissues ; and he was able to reach

quantitative results of great value. Pfeffer has more recently

made an extended study of the phenomena of osmosis, espec-

ially in those aspects relating to physiological phenomena. He
has shown that colloid membranes produced by purely chemi-

cal means are even more efficient than the organic membranes
employed by Graham.

73. Dialysis.—Upon the principles just set forth Graham
has founded a method of separating crystalloids from any col-

loid matters in which they may be contained, which is often of

great importance in chemical investigations. .The apparatus

employed by Graham consists of a hoop, over one side of which

parchment paper is stretched so as to constitute a shallow

basin. In this basin is placed the mixture under investigation,

and the basin is then floated upon pure water contained in an

outer vessel. If crystalloids be present, they will in due time

pass through the membrane into the water, leaving the colloids

behind. The process is often employed in toxicology for sep-

arating poisons from ingesta or other matters suspected of

containing them. I* is called dialysis, and the substances that

pass through are said to dialyse.

74. Laws of Diffusion of Gases.—Gases obey the same

elementary laws of diffusion as liquids. The rate of diffusion

varies inversely as the pressure, directly as the square of the

absolute temperature, and inversely as the square root of the

density of the gas. A gas diffuses through porous solids ac-

cording to the same laws. An apparatus by which this may
be conveniently illustrated consists of a porous cell, the open

end of which is closed by a stopper, through which passes a



I08 ELEMENTARY PHYSICS. [73

long tube. This is placed in a vertical position, with the open

end of the tube in a vessel of water. If, now, a bell-jar con-

taining hydrogen be placed over the porous cell, hydrogen

passes into the cell more rapidly than the air escapes from it

:

the pressure inside is increased, as is shown by the escape of

bubbles from,the end of the tube. If, now, the jar be removed^,

diffusion outward occurs more rapidly than diffusion inward;

the pressure within soon becomes less than the atmospheric*

pressure, as is shown by the rise of the water in the tube. ',

ELASTICITY.

75. Stress and Strain.—When a body is made the medium
for the transmission of force, the application of Newton's third

law shows that there is a stress inithe medium. This stress is

always accompanied by a corresponding change of form of the

body, called a strain.

In some bodies equal stresses applied in any direction pro-

duce equal and similar strains. Such bodies are isotropic. In

others the strain alters with the direction of the stress. These
bodies are eolotropic.

According to the molecular theory of matter, the.form of a

body is permanent so long as the resultant of the stresses act-

ing on it from without, with the interior forces existing be-

tween the individual molecules of the Ibody, reduces to zero.

The molecular forces and motions are such that there is a cer-

tain form of the body, for every external stress in which its

molecules are in equilibrium. Any change of the stress in the

body is accompanied by a readjustment of the molecules,

which is continued until equilibrium is again established.

If the stress tend only to increase or diminish the distance

between the molecules, it is called a tension or a pressure re-

spectively ; if it tend to slide one line or sheet of molecules

past another tangentially, it is called a shear or a shearing-stress.
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All stresses can be resolved into these two forms. The cor-

responding changes of shape are called dilatations, compressions,

and shearing-strains.

The term pressure is used with several different meanings.

In order to most clearly present these, /we will consider a right

cylinder, transmitting a stress in the direction of its axis. The
stress itself is often called the totalpressure upon the cylinder.

If we concfeive the cylinder to consist of a great number of

elementary cylinders of small cross-section, and if the total

pressure upon any one of them, as here defined, be to the total

pressure on the' whole cylinder as the cross-section of the ele-

mentary cylinder is to the cross-section of the whole cylinder,

then it is said that the pressure on the cross-section is uniform,

and th.Q pressure on an area in that cross-section is defined as

the product of the total pressure on the cylinder into the

ratio of that area to the cross-section of the cylinder. Further,

\.\^& pressure at a point, in a direction normal to the cross-sec-

tion, is defined as the ratio of the pressure on an area, taken in

the cross-section with its centre of inertia at the point, to that

area, when the area is diminished indefinitely. This definition

may at once be generalized. The pressure in any given direc-

tion at a point in a medium transmitting stress in any manner

whatever, is the ratio of the pressure on any area, taken' nor-

mal to the given direction and with its centre of inertia at the

point, to that area, when the area is diminished indefinitely.

In case a stress exists between two bod.ies, which acts nor-

mally across a common surface of contact, the term pressure is

also used to denote this stress, and the pressures on an area

and at a point in the surface of contact, are defined exactly as

above.

76. Modulus of Elasticity.—If, for a given amount of stress

between certain limits, a body be deformed by a definite

amount, which is constant so long as the stress remains con-

stant, and if, when the stress is removed, the body regain its
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original condition, it is said to be perfectly elastic. Any body

only partially fulfilling these conditions is said to be imperfectly

elastic.

The definition of elasticity in its physical sense, as a prop-

erty of bodies, has been already given. It is measured by the

rate of change, in a unit of the body, of the stress with respect

to the strain. Thus for example, the voluminal elasticity of a

fluid is measured by the limit of the ratio of any small change

of pressure to the corresponding change of unit volume. The
tractional elasticity of a wire under tension is measured by the

liniit of the ratio of any small change in the stretching-weight

to the corresponding change in unit length. This ratio is called

the modulus of elasticity, ox simply the elasticity of a body,

and its reciprocal 'Cc^^ coefficient of elasticity.

77. Modulus of Voluminal Elasticity of Gases.—Within

certain limits of temperature and pressure the volume of any

gas, at constant temperature, is inversely as the pressure upon

it. This law was discovered by Boyle in 1662, and was after-

wards fully proved by Mariotte. It is known, from its discov-

erer, as Boyle's law.

Thus, if / and p, represent different pressures, v and v^ the

corresponding volumes of any gas at constant temperature,

then

I I

p :p, = -•• -',

whence

pv = p,v,. (27)

Now, p/v, is a constant which may be determined by choosing

any pressure p^ and the corresponding volume v^ as standards

:

hence we may say, that, at any given temperature, the product

pv is a constant. The limitations to this law will be noticed

later.
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If we draw the curve marked out by a point having its

ordinate and abscissa so related that xy equals a constant, we
obtain a rectangular hyperbola referred to its asymptotes. Let

X represent the'volume and y the pressure of a quantity of gas-

Then this curve shows the relation of pressure and volume in

all their combinations.

Draw the lines as in Fig. 38, letting AC, JD, represent

volumes differing only by a small amount.

We must first show that AE is numeri-

•cally equal to the modulus of elasticity. The
CG

ratio -g^ is the voluminal compression per

-unit volume for the increment of pressure

GD
GD: hence, by definition, tstt is the modulus

AC
of elasticity. But, from similarity of . tri-

angles, AE : GD = AC : CG.

Hence we have

Fig. 3S.

GDAE = jyT- = the modulus of elasticity.

Al:

Now, since, by construction, the rectangles AB and /K are

equal, and the rectangle AK is common to them, the rectangles

J^G and CiTare equal, and

CG:DG=GA: GK.

By similar triangles,

"whence
CG:DG= CA -.AE;

GA:GK=CA: AE.
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Now, if the increment of pressure be made indefinitely-

small, so that in the limit D arid C coincide, the Hne CE be-

comes a tangent to the curve, and GA, GK, are respectively

equal to CA, CB. CB therefore equals AE frdm the last pro-

portion: hence, in the case of a gas obeying Boyle's law, the

modulus of elasticity is numerically equal to the pressure.

The discussion of the experimental facts in connection with

the elasticity of gases, and the explanation of the apparatus-

founded "upon it, will be resumed in a future chapter.

78. Modulus of Voluminal Elasticity of Liquids.—When
liquids.are subjected to voluminal compression, it is found that

their modulus of elasticity is much greater than that of gases,

For at least a limited range of pressures the modulus of

elasticity of any one liquid is constant, the change in volume
being proportional to the change in the pressure. The modulus-

differs for different liquids.

The instrument used to determine the modulus of elasticity

of liquids is called a piezometer. The first form in which the ,

instrument was devised by Oersted, while not the best for ac-

curate determinations, may yet serve as a type.

The liquid to be compressed is contained in a thin glass,

flask, the neck of which is a tube with a capillary bore. The
flask is immersed in water contained in a strong glass vessel

fitted with a water-tight metal cap, through which moves a

piston. By the. piston, pressure may be applied to the water,

and through it to the flask and to the liquid contained in it.

The end of the neck of the small flask is inserted down-
wards under the surface of a quantity of mercury which lies at

•the bottom of the stout vessel. The pressure is registered by
means of a compressed-air, manometer (§ 96) also inserted in

the vessel. When the apparatus is arranged, and the piston

depressed, a rise of the mercury in the neck of the flask occurs,,

which indicates that the water has been compressed.

, An error may arise in the use of this form of apparatus from.
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'the change in the capacity of the flask, due to the pressure.

Oersted assunjed, since the pressure on the interior and exterior

walls was the same, that no change would occur. Poisson, how-

ever, showed that such a change would occur, and gave a formula

by which it might be calculated. By introducing the proper

corrections, Oersted's piezometer may be used with success.

A different form of the instrument, employed by Regnault,

is, however, to be preferred. In it, by an arrangement of stop-

cocks, it is possible to apply the pressure upon either the

interior or exterior wall of the flask separately, or upon both
- together, and in this way to experimentally determine the cor-

rection to be applied for the change in the capacity of the flask.

It is to be noted that the modulus of elasticity for liquids

is so great; that, within the ordinary range of pressures, they

may be regarded as incompressible. Thus, for example,, the

alteration of volume for sea-water by the addition of the pres-

sure of one atmosphere is 0.000044. The change in volume,

then, at a depth in the ocean of one kilometre, where the pres-

sure is about 99.3 atmospheres, is 0.00437, oi" about -g^ of the

whole volume.

79, Modulus of Voluminal Elasticity of Solids.—The

modulus of voluminal elasticity of solids is believed to be gen-

erally greater than that of liquids, though no reliable experi-

mental results have yet been obtained.

The modulus, as with liquids, differs for different bodies.

80. Shears.^A strain in which parallel planes or sheets

of molecules are moved tangentially

over one another, each plane being r P' \

displaced by an amount proportional \ / \

to its distance from one of the planes \ / ^

assumed as fixed, is called a shear. \ /

To illustrate this definition, let uS ^
consider a parallelopiped, of which F1G.39.

the cross-section made at right angles to its sides is a rhombus,

8
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and let ABDC in the diagram (Fig. 39) represent that cross-

section.

If the rhombus ABDC be deformed so as to become
ABD^C^, that deformation is a simple shear. It is plain that

a simple shear is equivalent to an extension in lines parallel to

AD, and a contraction in those at right angles to AD. The
directions AD and CB are called the principal axes of the

shear. The amount of the shear is the displacement of the

planes per unit of distance from the fixed plane ; that is, -r^EB
is the amount of the shear.

The stresses that give rise to a simple shear can plainly be

conceived of as consisting of two equal couples, the forces

comprising which act tangentially upon parallel planes which
are moved over one another, and make equal angles with the

axes of the shear. The foirces making, up these couples may
be compounded two and two, a and b, a^ and b^ (Fig. 40),

making up, a tension normal to the dimin-

ished axis ; a^ and b, a and ^,, making up
a pressure normal to the increased axis.

These stresses are measured per unit of area

of the undeformed sides or sections of the

solid.

The resistance offered by a body to a

shearing-stress is called its rigidity, and the ratio of a very
small change in the stress to the corresponding increment in

the amount of the shear is called the modulus of rigidity.

81. Elasticity of Tension.—The first experimental deter-

minations of the relations between the elongation of a solid

and the tension acting on it were made by Hooke in 1678.

Experimenting with wires of different materials, he found that

for small tensions the elongation is proportional to the stress.

It was afterwards found that this law is true for small com-
pressions.
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The ratio of, the stress to the elongation of unit length of a

wire of unit section is the modulus of tractional elasticity. For

different wires it is found that the elongation is proportional

to the length of the wires, and inversely to their section. The
formula embodying these facts is

where V is the elongation, / the length, s the section of the

wire, 5 the stress, and fi the modulus of tractional elasticity.

A method of expressing the modulus of elasticity, due to

Thomas Young, is sometimes valuable. " We may express the

elasticity of any substance by the weight of a certain column

of the same substance, which may be denominated the modu-

lus of its elasticity, and of which the weight is such that any

addition to it would increase it in.the same proportion as the

weight added would shorten, by its pressure, a portion of the

substance of equal diameter." For example, considering a

cubic litre of air at o° C. and 760 millimetres of mercury pres-

sure, and calling its weight unity, *e find, from the fact that

the weight of one litre of mercury is 105 17 times that of a

litre of air, that the pressure of the atmosphere upon a square

decimetre is 79929 units. If we conceive the air as of equal

density throughout, this pressure is equivalent to the weight

of a column of air one square decimetre in section and 7992.9

metres high. The weight of this column is the modulus of

elasticity for air ; for we know, by Boyle's law, that if the

column be altered in length, and its weight' therefore cor-

respondingly altered, the volume of the cubic litre of air

under consideration will also alter inversely. The height of

such a column of air as we have assumed is called the height

of the homogeneous atmosphere.

82. Elasticity of Torsion.—When a cylindrical wire,

clamped at one end, is subjected at the other to the action of a
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couple the axis of which is the axis of the cylinder, it is found

that the amount of torsion, nleasured by the angle of displace-

ment of the arm of the couple, is proportional to the moment
of the couple, to the length of the wire, and inversely to the

fourth power of its radius. It also depends on the modulus

of rigidity. The formulated statement of these facts is

<t> =—

'

(29).
nr

whei-e <t> is the angle of torsion, / the length, r the radius of the-

wire, C the moment of couple, and n the modulus of rigidity.

No general formula can be found for wires with sections of

variable form. ,

The laws of torsion in wires were first investigated by Cou-

lomb, who applied them in the construction of an apparatus of

great value for the measurement of small forces.

The apparatus consists essentially of a small cylindrical wire,

suspended firmly from the centre of a disk, upon which is cut.

a graduated circle. ' By the rotation of this disk any required,

amount of torsion . may be given to the wire. On the other

extremity of the wire is fixed, horizontally, a bar, to the ends,

of which the forces constituting the couple are applied. Ar-

rangements are also made by which the angular deviation of

this bar from the point of equilibrium may be determined.

When forces are applied to the bar, it may be brought back to

its former point of equilibrium by rotation of the upper disk.

Let represent the moment of torsion; that is, the couple

which, acting on an arm of unit length, will give the wire an

amount of torsion equal to a radian, C the moment of couple

acting on the bar, r the amount of torsion measured in ra-

dians ; then

C=®r.
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We may find the value of in absolute measure by a method
of oscillations analogous to that used to determine g with the

pendulum.

A body of which the moment of inertia can be determined

by calculation is substituted for the bar, and thd time T of one

of its oscillations about the position of equilibrium observed.

Since the amount of torsion is proportional to the moment
of couple, the oscillating body has a simple harmonic motion.

If a represent the amplitude of oscillation of any particle at

distance r from the axis of rotation, we have a = rr. • The
velocity of the particle at the point of equilibrium is then

27ta

and the angular velocity of the body, therefore, equals

2nr

The kinetic energy of a body rotating about a centre is ^loo' ;

and the kinetic energy of the body considered, at the point of

equilibrium, is, therefore, '

i/4!Ll

The potential energy due to the torsion of the wire is ^©r',

since ^©r is the average moment of couple, and r the distance

through which this couple acts. These expressions are neces-

sarily equal : hence

or
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We may use a single instead of a double oscillation, when we
may write the formula

This apparatus was used by Coulomb' in his investigation of

the law of electrical and magnetic actions. It was also employed

by Cavendish, as has been already noticed, to determine the

constant of gravitation.

83. Elasticity of Flexure.—If a rectangular bar be

clamped by one end, and acted on at the other by a force

normal to one of its sides, it will be bent or flexed. The
amount of flexure—that is, the amount of displacement of the

extremity of the bar from its original position—is found to be

proportional to the force, to the cube of the length of the bar,

and inversely to its breadth, to the cube of its thickness, and

to the modulus of tractional elasticity. The formula there-

fore becomes

84. Limits of Elasticity.—The theoretical deductions and
empirical formulas which we have hitherto been considering are

strictly applicable only to perfectly elastic bodies. It is found

that the voluminal elasticity of fluids is perfect, and that within

certain limits of deformation, varying for different bodies, we
may consider the elasticity of solids to be practically perfect

for every kind of strain. If the strain be carried beyond the

limit of perfect elasticity, the body is permanently deformed..

This permanent deformation is called set.

Upon these facts we may base a distinction between solids.

and fluids : a solid requires the stress acting on it t'o exceed a

certain limit before any permanent set occurs, and it makes no-
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difference how long the stress acts provided it lie within the

limits. A fluid, on the contrary, may be deformed by the

slightest shearing stress, provided time enough be allowed for

the movement to take place. The fundamental difference lies

in the fact that fluids offer no resistance to shearing stress other

than that due to internal friction or viscosity.

A solid, if it be deformed by a slight stress, is soft ; if only

by a great stress, is hard or rigid. A fluid, if deformed quickly

by any stress, is mobile ; if slowly, is viscous.

It must not be understood, however, that the behavior of

elastic solids under stress is entirely independent of time. If,

for example, a steel wire be stretched by a weight which is

nearly, but not quite, sufficient to produce an immediate set, it

is found that, after some time has elapsed, the wire acquires a

permanent set. If, on the other hand, a weight be put upon

the wire somewhat less than is required to break it, by al-

lowing intervals of tinie to elapse between the successive ad-

ditions pf small weiglits, the total weight supported by the

wire may be raised considerably above the breaking-weight. If

the weight stretching the wire be removed, the return to its

original form is not immediate, but gradual. If the wire car-

rying the weight be twisted, and the weight set oscillating by

the torsion of the wire, it is found that the' oscillations die away
faster than can be explained by any imperfections in the elas-

ticity of the wire.

These and similar phenomena are manifestly dependent

upon peculiarities of molecular arrangement and motion. The
last two are exhibitions of the so-called viscosity of solids.

The molecules of solids, just as those of liquids, move among
themselves, but with a certain amount of frictional resistance.

This resistance causes the external work done by the body to

be diminished, and the internal work done among the mole-

cules becomes transformed into heat.



CHAPTER IV.

MECHANICS OF FLUIDS.

85. Pascal's Law.—A perfect fluid xf\z.Y be defined as a

body which offers no resistance to shearing-stress. No actual

fluids are perfect. Even those which approximate that condi-

tion most nearly, offer resistance to shearing-stress, due to

their viscosity. With most, however, a very short time only

is needed for this resistance to vanish ; and all mobile fluids at

rest can be dealt with as if they were perfect, in determining

the conditions of equilibrium. If they are in motion, their

viscosity becomes a more important factor.

As a consequence of this definition of a perfect fluid, follows

a most important deduction. In a fluid in equilibrium, not

acted on by any outside forces except the pressure of the con-

taining vessel, the pressure at every point and in every direc-

tion is the same. This law was first stated by Pascal, and is

known as Pascal's law.

The truth of Pascal's law appears, if, in a fluid fulfilling the

conditions indicated, we imagine a cube of the fluid to become
solidified. Then, if the law as just stated were not true, there

would be an unbalanced force in some direction, and the cube

would move, which is contrary to the statement that the fluid

is in equilibrium. If a vessel filled with a fluid be fitted with a

number of pistons of equal area A, and a force Ap be applied

to one of them, acting inwards, a pressure Ap will act outwards

upon the face of each of' the pistons. These pressures may be

balanced by a force applied to each piston. Yin -\- \\>^ the

number of the pistons, the outward pressure on n of them,

caused by the force applied to one, is npA.
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The fluid will be in equilibrium when a pressure^ is acting

on unit area of each piston. It is plain that the same reason-

ing will hold if the area of" one of the pistons be A and of an-

other he nA. A pressure Ap on the one will balance a pres-

sure of nAp on the other. This principle governs the action of

the hydrostatic press

.

86. Relations of Fluid Pressures due to Outside Forces.

—If forces, such as gravitation, act on the mass of a fluid from

without, Pascal's law no longer holds true. For suppose the,

cube of solidified fluid to be acted on by gravity ; then the

pressure on the upper face must be less than that on the

lower face by the weight of the cube, in order that the fluid

may still be in equilibrium. As the cube may be made as

small as we please, it appears that, in the limit, the pressure

on the two faces only differs by an infinitesimal ; that is, the

pressure in a fluid acted on by outside' forces is the same at one

point for all directions, but varies continuously for different

points.

The surface of a fluid of uniform density acted on by grav-

ity, if at rest, is everywhere perpendicular to the lines of force
;

for, if this were not so, the force at a point on the surface

could be resolved into two components, one normal and the

other tangent to the surface. But, from the nature of a fluid,

the tangential force would set up a motion of the fluid, which

is contrary to the statement that the fluid is at rest. If a su'r-

face be drawn through the points in the field at which the

pressure is the same, that surface will be perpendicular to the

liries of force. For, consider a filament of solidified fluid lying

in the surface ; its two ends suffer equal and opposite pressures

;

hence, since by hypothesis the fluid is in equilibrium, the force

acting upon it, due to gravity, can have no component in the

-direction of its length, and is perpendicular to the surface in

which it lies.

Surfaces of equal pressures are equipotential surfaces. In
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small masses of fluid, in which the lines of force due to gravity-

are parallel, these surfaces are horizontal planes. In larger

masses, such as the oceans, they are curved to correspond to

the divergence of the lines of force from the centre of the earth.

In a liquid the pressure at a point is proportional to its

depth below the surface of the liquid. For, imagine two rec-

tangular prisms of solidified liquid with bases which are equal

and coincident with the surface of the liquid, and with heights

such that the one is n times the other. From .the fact that

liquids are practically incompressible, the weight of. these

prisms acting downwards is proportional to their volumes^

and hence to their heights. Since the liquid is in equilibrium,

these weights are balanced by the upward pressures on their

lower bases. These pressures are therefore proportional to

the heights of the prisms, or to the depths of the surfaces to

which they are applied.

From the foregoing principles, it is evident that a liquid

contained in two communicating vessels of any shape whatever

will stand at the same level in both. If one, however, be filled

with a liquid of different density from that in the other, equi-

librium will be established when the depths are inversely as

the densities of the liquids.

87. The Barometer.—The instrument best adapted to il-

lustrate these principles, and also of great importance in many
physical investigations, is the barometer. It was invented by
Torricelli, a pupil of Galileo. The fact that Ajs^ater can be raised

in a tube in which a complete or partial vacuum has been made
was known to the ancients, and was explained by them, and by
the schoolmen after them, by the maxim that " TMature-abhors

a vacuum." They must have been familiar with the action of

pujnps, for the force-pump, a far more complicated instrument,

was invented by Ctesibius of Alexandria, who lived during the

second century B.C. It was not until the time of Gahleo,

however, that the first recorded observations were made that
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the column of water in a pump rises only to a height of about

10.5 metres. Galileo failed to give the true explanation of this

fact. He had, however, taught that the air has weight ; and
his pupil Torricelli, using that principle, was more successful.

He showed, that if a glass tube sealed at one end, over 76a
millimetres long, were filled with mercury, the open end stopped

with the finger, the tube inverted, and the unsealed end plunged

beneath a surface of mercury in a basin, on withdrawing the

finger the mercury in the tube sank until its top surface was
about 760 millimetres above the surface of the mercufy in the

basin. The specific gravity of the mercury being 13.59, ^^
weight of the mercury column and that of the water column in

the pump agreed so nearly as to show that the maintenance of

the columns in both cases was due to a common cause,—the

pressure of the atmosphere. This conclusion was subsequently

verified and established by Pascal, who requested a friend to

observe the height of the mercury column at the bottom and

at the top of a mountain. On making the observation, the

height of the column at the top was found to be less than at

the bottom. Pascal himself afterwards observed a slight though

distinct diminution in the height of the column on ascending

the tower of St. Jacques de la Boucherie in Paris.

The form of barometer first made by Torricelli is still often

used, especially when the instrument is stationary, and is in-

tended to.be one of precision. In the finest instruments of

this class a tube is used which is three or four centimetres in

diameter, so as to avoid the correction for capillarity. A screw

of known length, pointed at both ends, is arranged so as to

move vertically above the surface of the mercury in the cistern.

When an observation is to be made, the screw is moved until

its lower point just touches the surface. The distance between

its upper point and the top of the column is measured by

means of a cathetometer; and this distance added to the

length of- the screw gives the height of the column.
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Other forms of the instrument are used, most of which are

arranged with reference to convenient transportability. Vari-

ous contrivances are added by means of which the column is

made to move an index, and thus record the pressure on a

graduated scale. AH these forms are only modifications of

Torricelli's original instrument.

The pressure indicated by the barometer is usually stated

in terms of the height of the column. Mercury being practi-

cally incompressible, this height is manifestly proportiona 1 ,to

the pressure at any point in the surface of the mercury in the

cistern. The pressure on any given area in that surface can be

calculated if we know the va|lue of g at the place and the spe-

cific gravity of mercury, as well as the height of the column.

The standard barometric pressure, represented by 760 millimer

tres of mercury, is a pressure of 1.033 kilograms on every

square centimetre. It is called a pressure of one atmosphere

;

and pressures are often measured by atmospheres.

In the preparation of an accurate barometer, it is necessary'

that all air be removed from the mercury : otherwise it will

collect in the upper part of the tube, by its pressure lower the

top of the column, and make the barometer read too low.

The air is removed by partially filling the tube with mercury,

which is then boiled in the tube, gradually adding small quan-

tities of mercury, and boiling after each addition, until the

tube is filled. The boiling must not be carried too far; for

there is danger, in this process, of expelling the air so com-

pletely that the mercury will adhere to the sides of the tube,

and will not move freely. For rough work the tube may be

filled with cold mercury, and the air removed by gently tap-

ping the tube, so inclining it that the small bubbles of air

which form can coalesce, and finally be set free at the surface

of the mercury.

88. Archimedes' Principle.—If a solid be immersed in at

fluid, it loses in weight an amount equal to the weight of the
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fluid displaced. This law is known, from its* discoverer, as

Archimedes' principle.

The truth of this law will appear if we consider the space

occupied by the solid as filled with the fluid. The fluid in this

space will then be in equilibrium, and the upward pressure on

it must exceed the downward pressure by an amount equal to

its .weight. The resultant of the pressure acts through the

centre of gravity of the assumed portion of fluid, otherwise

equilibrium would not exist. If, now, the solid occupy the

space, the difference between the upward and the downward
pressures on it must still be the same as before,—namely, the

weight of the fluid displaced by the solid ; that is, the solid

loses in apparent weight an amount equal to the weight of the

displaced fluid.

89. Floating Bodies.—When the solid floats on the fluid,

the weight of the solid is balanced by the upward pressure.

In order that the solid shall be in equilibrium, these forces

must act in the same line. The resultant of the pressure, which

lies in the vertical line passing through the centre of gravity of

the displaced fluid, must pass through the centre of gravity of

the solid. Draw the line in the solid joining these two centres,

and call it the axis of the solid. The equilibrium is stable

when, for any infinitesimal inclination of the axis from the ver-

tical, the vertical line of upward pressure cuts the axis in a

point above the centre of gravity of the solid. This point is

called the metacentre.
,

90. Specific Gravity.—Archimedes' principle is used to de-

termine the specific gravity of bodies. The specific gravity of

a body is defined as the ratio of its weight to the weight of an

equal volume of pure water at a standard temperature.

The specific gravity of a solid that is not acted on by water

may be determined by means of the hydrostatic balance. The
body under examination, if it will sink in water, is suspended

from one scale-pan of a balance by a fine thread, and is weighed*
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It is then immersed in water, and is weighed again. The
difference between the weights in air and in water is the weight

of the displaced water, and the ratio of the weight of the body-

to the weight of the displaced water is the specific gravity of

the body.

If the body will not sink in water, a sinker of unknown
weight and specific gravity is suspended from the balance, and

counterpoised in water. Then the body, the specific gravity of

which is sought, is attached to the sinker, and it is found that

the equilibrium is destroyed. To restore it, weights must be

added to the same side. These, being added to the weight of

the body, represent the weight of the water displaced.

The specific gravity of a liquid is obtained by first balancing

in air a mass of some solid, such as platinum or glass, that is

not acted on chemically by the liquid, and then immersing the

mass successively in the liquid to be tested and in water. The
ratio of the weights which must be used to restore equilibrium

in each case is the specific gravity of the liquid.

The specific gravity of a liquid may also be found by means
of the specific gravity bottle. This is a bottle fitted With a

ground glass stopper. The weight of the water which com-

pletely fills it is determinpd once for all. When the specific

gravity of any liquid is desired, the bottle is filled with the

liquid, and the weight of the liquid determined. The ratio of

this weight to the weight of an equal volume of water is the

specific gravity of the liquid.

The same bottle may be used to determine the specific

gravity of any solid which cannot be obtained in continuous

masses, but is friable or granular. A weighed amount of the

soHd is introduced into the bottle, which is then filled with

water, and the weight of the joint contents of the bottle deter-

mined. The difference between the last weight and the sum
of the weights of the solid and of the water filling the bottle

is the weight of the water displaced by the solid. The ratio
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of .the weight of the solid to the weight thus obtained is the

specific gravity of the solid.

The specific gravity of a liquid may also be obtained by
means of hydrometers. These are of two kinds,—^the hydro-

meters of constant weight and those of constant volume. The
first consists usually of a glass bulb surmounted by a cylindri-

cal stem. The bulb is weighted, so as to sink in pure water to

some definite point on the stem. This point is taken as the

zero ; and, by successive trials with different liquids of known
specific gravity, points are found on the stem to which the

hydrometer sinks in these liquids. With these as a basis,

the divisions of the scale are determined and cut on the stem.

The hydrometer of constant volume consists of a bulb

weighted so as to stand upright in the liquid, bearing on the

top of a narrow stem a small pan, in which weights may be

placed; The weight of the hydrometer being known, it is im-

mersed in water ; and, by the addition of weights in the pan,

a fixed point on the stem is brought to coincide with the sur-

face of the water. The instrument is then transferred to the

liquid to be tested, and the weights in the pan changed until

the fixed point again comes to the surface of the liquid. The
sum of the weight of the hydrometer and the weights added

in each case gives the weight of equal volumes of water and

of the liquid, from which the specific gravity sought is easily

obtained.

The specific gravity of gases is often referred to air or to

-hydrogen instead of water. It is best determined by filling a

large glass flask, of known weight,, with the gas,, the specific

-gravity of which is to be obtained, and weighing it, noting the

temperature arid the pressure of the gas in the flask. The
weight of the gas at the standard temperature and pressure is

then calculated, and the ratio of this weight to the weight of

the same volume of the standard gas is the specific gravity

•desired. The weight of the flask used in this experiment must
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be very exactly determined. The presence of the air vitiates

all weighings performed in it, by diminishing the true weight

of the body to be weighed and of the weights employed, by

an amount proportional to their volumes. The consequent

error is avoided either by performing the weighings in a.

vacuum produced by the air-pump, or by correcting the appar-

ent weight in air to the true weight. Knowing the specific

gravity of the weights and of the body to be weighed, and the

specific gravity of air, this can easily be done,

91. Motions of Fluids.—If the parts of the fluid be inov-^

ing relatively to each other or to its bounding-surface, the cir-

cumstances of the motion can be determined only by making-

limitations which are not actually found in nature. There
thus arise certain definitions to which we assume that the fluid

under consideration conforms. '

The motion of a fluid is said to be um/orm when each ele-

ment of it has the same velocity at all points of its path. The
motion is steady when, at any one point, the velocity and
direction of motion of the elements successively arriving at.

that point remain the same for each element. If either the

velocity or direction of motion change for successive elements,,

the motion is said to be varying. The motion is further said

to be rotationat or irrotational according as the elements of

the fluid have or have not an angular velocity about their

axes.

In all discussions of the motions of fluids a condition is

supposed to hold, called the condition of continuity. It is as-

sumed that, -in any volume selected in the fluid, the change -of

density in that volume depeftids solely on the difference between

the amounts of fluid flowing into and out of that volume. In

an incompressible fluid, or liquid, if the influx be, reckoned plus-

and the efflux minus, we have, letting Q repl-esent the amount
of the liquid passing through the boundary in any one direc-

tion, ^Q = o. The results obtained in the discussion of fluid.
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motions must all be interpreted consistently with this condition.

If the motion be such that the fluid breaks upi into discontinu-

ous parts, any results obtained by hydrodynamical considera-

ations no longer hold true.

If we consider any stream of incompressible fluid, of which,

the cross-sections at two points where the velocities of the ele-

ments are f, and z*, have respectively the areas A^ and ^„ we-

can deduce at once from the condition of continuity

A,v, = A„v„. (32)

Fig. 41.

92. Velocity of Efiflux.—We shall now apply this principle

to discover the velocity of efflux of a liquid from an orifice in

the walls of a vessel.

Consider any small portion of the

liquid, bounded by stream lines, which we
maycalla^/aww^. Represent the velocity

of the filament at B (Fig. 41) by v^, and at

C by V, and the areas of the, cross-sections

'of the elements at the same points by A^

andA . We have then, as above, A^v^ = -^ v.

We assume that the flow has been estab-

lished for a time sufiiciently long for the motion to become

steady. The energy of the mass contained in the filament be-

tween B and C is, therefore, constant. Let V^ represent the

potential at B due to gravity, V the potential at C, and d the

density of the liquid. The mass that enters at .5 in a unit of

time is

..
dA,ii,.

The mass that goes out at C is the equal quantity dAv. The.

energy entering at B is

dA,vi\v^ + FO,
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the energy passing out at C is

dAv{^ + V).

If the pressures at B and C on unit a:reas be expressed by

/j and /, the work done at B on the entering mass by the

pressure. /j \s p^A^v^, and at C on the outgoing mass is pAv.
The energy within the filament remaining constant, the incom-

ing must equal the outgoing energy ; therefore

pAv + dAv^W ^V)= pA.v. + dA,vl\v,^ + V^,

whence, since A^v^ = Av, we have

We may write this equation

i<z''-<) = (P;-P-)+^^; (33)

or, again, since A^v^ = Av,

^i' -^) = (^^-n +^^- (34)

To apply equation (34) to the case of a hquid flowing freely

into air from an orifice at C, we observe that the difference of

potential {V^ — V) equals the work done in carrying a gram

from C to B or equals g{h — h^, where h represents the height
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of the surface above C, and \ that of the surface above B.
Further, we have

where /„ is the atmospheric pressure. .At the orifice,^ equals

pa. . We have then

whence

^ ?i^.V - ^,-

If, now, A become indefinitely small as compared with A^, in

the limit, the velocity at C becomes

V = V2gk ; (35)

that is, the velocity of efHux of a small stream issuing from an

orifice in the wall of a vessel is independent of the density of

the liquid, and is equal to the velocity which a body would
acquire in falling freely through a distance equal to that

between the surface of the liquid and the orifice.

This theorem was first given by Torricelli from consid-

erations based on experiment, and is known as Torricelli'

s

\theorent.

We may apply the general .equation to the case of the

efflux of a liquid through a siphon. A siphon is a bent tube

which is used to convey a liquid by its own weight over a

barrier. One end of the siphon is immersed in the liquid, and
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the discharging end, which must be below the level of the-

liquid, opens 'on the other side of the barrier. To set the

siphon in operation it must be first filled with the hquid, after

which a steady iiow commences.
' A'

In this case, as before, we may set -jy = 0,v, = o,/ and/,,

both = /a, and {V, — V) = g'l, where / is the distance be-

tween the surface level and the discharging orifice. The ve-

locity becomes v ^ V 2gl. The siphon, therefore, discharges,

more rapidly the greater the distance between the surface level,

and the orifice. It is manifest that the height of the bend in

the tube cannot be greater than that at which atmospheric:

pressure would support the liquid.

The flow of a liquid into the vacuum formed in the tube of

an ordinary pump may also be discussed by the same equation..

The pump consists essentially of a tube, fitted near the bottom

with a partition, in which is a valve opening upwards. In the

tube slides a tightly fitting piston, in which is a valve, alsa.

opening upwards. The piston is first driven down to the par-

tition in the tube, and the enclosed air escapes, through the

valve in the piston. When the piston is raised, the liquid in

which the lower end of the tube is immersed passes through,

the valve in the partition, rises in the tube and fills the space

left behind the piston. When the piston is again lowered,,

the space above it is filled with the liquid, which is hfted out

of the tube at the next up-stroke.

To determine the velocity of the liquid following the pis-

ton, we notice that in this case/, = p^ and/ = o if the piston

move upward very rapidly, (F, — F") = — gk, where h is the

height of the top of the' liquid column above the free surface;

A'
in the reservoir, and -j-5- again = o. We then have



-92] MECHANICS OF FLUIDS. 133

The velocity when ^ = o is

"l/^
When h is such that dgh = pa, v = o, which expresses the con-

dition of equilibrium.

The equation v — y ^ expresses, more generally, the ve-
d

locity of efflux, through a small orifice, of any fluid of density

d, from a region in which it is under a constant pressure /„, into

•a vacuum.

Torricelli's theorem is shown to be approximately true by

allowing liquids to run from an orifice in the side of a vessel,

and measuring the path of the stream. If the theorem be

true, this ought to be a parabola, of which the intersection of

the plahe of the stream and of the surface of the liquid is the

directrix ; for each portion of the liquid, after it has passed the

orifice, will behave as a solid body, and mOve in a parabolic

path. The equation of this path is found, as in § 44, to be

2V' ,— x^^ jr.

g

TJow by Torricelli's theorem, we may substitute for 1? its

value zgh, whence j/' = ijix. In this equation, since the initial

movement of the stream is supposed to be horizontal, the per-

pendicular line through the orifice being the axis of the para-

bola, and the orifice being the origin, h is the distance from

the orifice to the directrix. Experiments of this kind have

been frequently tried, and the results found to approximate

more nearly to the theoretical as various causes of error were

removed.

When, however, we attempt to calculate the amount of
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liquid discharged in a given time, there is found to be a wider

discrepancy between the results of calculation and the ob-

served facts. Newton first noticed that the diameter of the

jet at a short distance from the orifice is less than that of the

orifice. He showed this to be a consequence of the freedom

of motion among the particles in the vessel. The particles

flow from all directions towards the orifice, those moving from

the -sides necessarily issuing in streams inclined towards the

axis of the jet. Newton showed that by taking the diameter

of the narrow part of the jet, which is called the vena contractu,

as the diameter of the orifice, the calculated amount of liquid

escaping agreed far more closely with theory.

When the orifice is fitted with a short cylindrical tube, the

interference of the different particles of the liquid is in some
degree lessened, and the quantity discharged increases nearly

to that required by theory.

93. Diminution ofPressure.—The Sprengel air-pump, an

important piece of apparatus to be described hereafter, de-

pends for its operation on the diminution

of pressure at points along the line of a

flowing column of liquid. Let us con-

sider a large reservoir filled with liquid,

which runs from it by a vertical tube en-

tering the bottom of the reservoir. From
Eq. 34 the value of/, the pressure at any

point in the tube, is

''11

P =A + (^. - V)d - idv'[i - £!).

zero.The ratio -j-j may be set equal to

Fig. 4!!.

jf ^ ^pjg ^2) represent the height of the

upper surface above the point in the tube at which we desire

to find the pressure, then {V^— F") = g'k. We then have
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p =Pa + dgh — ^dv^. If the tube be always filled with the-

liquid, Av — A^v^, where A and A„ represent the areas of the-

cross-sections of the tube at the point we are considering and

at the bottom of the tube, and v and z/^ represent the corre-

sponding velocities. Further, v^ = 2gh'^ if k^ represent the

distance from the upper surface to the bottom of- the tube.

We obtain, by substitution,

P=p.^dg\It-'^,h}^. (36)

A '

If h equal —~^k^, we have /=/„; and if an opening be

made in the wall of the tube, the moving liquid and the air will

A '

be in equilibrium. If h be less than —j^Ji^, the pressure / will

be less than/a, and air will flow into the tube. Since this ine-

quality exists when A^^A, it follows, that, if a liquid flow

from a reservoir down a cylindrical tube, the pressure at any

point in the wall of the tube is less than the atmospheric pres-

sure by an amount equal to the pressure of a column of the

liquid, the height of which is equal to the distance between

the point considered and the bottom of the tube.

94. Vortices.—A series of most interesting results has

been obtained by Helmholtz,,Thomson, and others, from the

discussion of the rotational motions of fluids. Though the

proofs are of such a nature that they cannot be presented

here, the results are so important that they will be briefly

stated.

A vortex line is defined as the line which coincides at every

point with the instantaneous axis of rotation of the fluid ele-

ment at that point. A vortex filament is any portion of the

fluid bounded by vortex lines.

A vortex is a vortex filament which has "contig'uous to it

over its whole' boundary irrotationally moving fluid."
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The theorems relating to this form of motion, as first proved

by Helmholtz, in 1868, show that,—

(i) A vortex in a perfect fluid always contains the same

fluid elements, no matter what its motion thrcJugh the sur-

rounding fluid may be.

(2) The strength of a vortex, which is the product of its

angular velocity by its cross-section, is constant ; therefore the

vortex' in an infinite fluid must always be a cjosed curve, which,

however, may be knotted and twisted in any way whatever.

(3) In a finite fluid the vortex may be open, its two ends

terminating in the surface of the fluid.

(4) The irrotationally moving fluid around a vortex has a

motion due to its presence, and transmits the influence of the .

motion of one vortex to another.

(5) If the vortices considered be infinitely long and recti-

linear, any one of them, if alone in the fluid, will remain fixed

in position.

(6) If two such vortices be present parallel to one another,

they revolve about their common centre of gravity.

(7) If the vortices be circular, anyone of them, if aloncj

moves with a constant velocity along its axis, at right angles

to the plane of the circle, in the direction of the motion of the

fluid rotating on the inner surface of the ring.

(8) The fluid encircled by the ring moves along its axis in

the direction of the motion of the ring, and with a greater

velocity.

(9) If two circular vortices move along the same axis, one
following the other, the one in the rear moves faster, and
diminishes in diameter; the one in advance moves slower, and
increases in diameter. If the strength and size of the two be
nearly equal, the one in the rear overtakes the other, and
passes through it. The two now having changed places, the

action is repeated indefinitely.

(10) If two circular vortices of equal strength move along
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the same axis toward one another, the velocities of both grad-

ually decrease and their diameters increase. The same result

follows if one such vortex move toward a solid barrier.

The preceding statements apply only to vortices set up in

a perfect fluid. They may, however, be illustrated by experi-

ment. To produce circular vortices in the air, we use a box

which has one of its ends flexible. A circular opening is cut

in the opposite end. Jhe box is filled with smoke or with

finely divided sal-ammoniac, resulting from the combination of

the vapors of ammonia and hydrochloric acid. On striking the

flexible end of the box, smoke rings are at once sent out.

The smoke ring is easily seen to be made up of particles re-

volving about a central core in the. form of a ring. With such

rings many of the preceding statements may be verified.

An illustration of the open vortex is seen when an oar-

bladp is drawn through the water. By makinig such open vor-

tices, using a circular disk, many of the observations with the

smoke-rings may be repeated in another form.

95. Air-Pumps.—The fact that gases, unlike liquids, are

easily compressed, and obey Boyle's law under ordinary condi-

tions of temperature and pressure, underlies the construction

and operation of several pieces of apparatus employed in phy-

sical investigations. The most important of these is the air-

J)ump.

The working portion of the air-pump is constructed essen-

tially like the common lifting-pump already described. The
valves must be light and accurately fitted. The vessel frotn

which the air is to be exhausted is joined to the pump by a

tube, the orifice of which is closed by the valve in the bottom

of the cylinder.

A special form of vessel much used in connection with the

air-pump is called the receiver. It is usually a glass cylinder,

open at one end, and closed by a hemispherical portion at the

other. The edge of the cylinder at the open end is ground
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perfectly true, so that all points in it are in the same plane.

This ground edge fits upon a plane surface of roughened brass,

or ground glass, called the //a^^, through which enters the tube

which joins the receiver to the cylinder of the pump. The-

joint between the receiver and the plate is made tight by a.

little oil or vaseline.

The action of the pump is as follows : as the piston is;

raised, the pressure on the upper surface of the valve in the

cylinder is diminished, and the air in the vessel expands in ac-

cordance with Boyle's law, lifts the valve, and distributes itself

in the cylinder, so that the pressure at all points in the vessel

and the cylinder is the same. The piston is now forced down,

the lower valve is closed by the increased pressure on its upper

surface, the valve in the piston is opened, 'and the air in the

cylinder escapes. At each successive stroke of the pump this

process is repeated, until the pressure of the remnant of air left

in the vessel is no longer sufificient to lift the valves.

The density of the air left in the vessel after a given num-
ber of strokes is determined, provided there be no leakage, by
the relations of the volumes of the vessel and the cylinder.

Let V represent the volume of the vessel, and C that of the

cylinder when the piston is raised to the full extent of the.

stroke. Let d and d^ respectively repi-esent the density of the

air in the vessel before and after one stiroke has been made.

After one down and one up stroke have been made, the air

which filled the volume Fnow fills V-\- C. It follows that

d. V
d ~ V-\-C'

As this ratio is constant no matter what density may be con-

sidered, it follows that, if d„ represent the density after «

strokes,

d„ I V
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As this fraction cannot vanish until n becomes infinite, it is

plain that a perfect vacuum can never, even theoretically, be

obtained by means of the air-pump. If, however, the cylinder

be large, the fraction decreases rapidly, and a few strokes are

sufficient to bring the density to such a point that either the

pressure is insufficient to lift the valves, or the leakage through

the various joints of the pump counterbalances the effect of

longer pumping. 1

In the best air-pumps the valves are made to open auto-

FlG. 43.

(

matically. In Fig. 43 is represented one of the methods by
which this is accomplished. They can then be made heavier

and with a larger surface of contact, so that 4:he leakage is di-

minished, and the limit of the useful action of the pump is

much extended. With the best pumps of this sort a pressure

of one-half a millimetre of mercury is reached.

The Sprengel air-pump depends for its action upon the

principle, discussed in § 93, that a stream of liquid runriing^

down a cylinder diminishes the pressure upon its walls. In the
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Sprengel pump the liquid used is mercury. It runs from a

large vessel down a glass tube, into the wall of which, at a dis-

tance from the bottom of the tube of more than 760 milliT

metres, enters the tube which connects with the receiver. The
lower end of the vertical tube dips into mercury, which pre-

vents air from passing up along the walls of the tube. When
the stream of mercury first begins to flow, the air enters the

<;olumn from the receiver, in consequence of the diminished

pressure, passes down with the mercury in large bubbles, and

emerges at the bottom of the tube. As the exhaustion pro-

ceeds, the bubbles become smaller and less frequent, and the

mercury falls in the tube with a sharp, metallic sound. It is

evident that, as in the cas,e of the ordinary air-pump, a perfect

vacuum cannot be secured. There is no leakage, however, in

this form of the aii--pump, and a very high degree of exhaus-

tion can be reached.

The Morren or Alvergniat mercury-pump is in principle

merely a common air-pump, in which combinations of stop-

<;ocks are used instead of valves, and a column of mercury in

place of the piston. Its particular excellence is that there is

scarcely any leakage.

The compressing-pump is used, as its name implies, to in-

crease the density of air or any other gas within a receiver.

The receiver in this case is generally a strong metallic vessel.

The working parts of the pump are precisely those of the air-

pump, with the exception that the valves open downwards.
As the piston is raised, air enters the cyHnder, and is forced

into the receiver at the down-stroke.

96. Manometers.—The manometer is an instrument used

for measuring pressures. One variety depends for its opera-
'

ation upon the regularity of change of volume of a gas with

change of pressure. This, in its typical form, consists of a

heavy glass tube of uniform bore, sealed at one end, with the

open end immersed in a basin of mercury. The pressure to be
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measured is applied to the surface of the mercury in the basin,.

As this pressure increases, the air contained in the tube is

compressed, and a column of mercury is forced up the tube.

The top of this column serves as an index. We know, from

Boyle's law, that, when the volume of the air has diminished

one-half, the pressure is doubled. The downward pressure of

the mercury column makes up a part of this pressure ; and the

pressure acting on the surface of the mercury in the basin is

greater than that indicated by the compression of the air in the

tube, by the pressure due to the mercury column. For many
"purposes the manometer tube may be made very short, and

the pressure of the mercury column that rises in it may be

"neglected.

97. Aneroids.—The aneroid is an instrument used to de-

termine ordinary atmospheric pressures. On account both of

its delicacy and its easy transportability, it is often used in-

stead of the barometer. It consists of a metallic box, the

cover of which is made of thin sheet-metal corrugated in cir-

cular grooves. The air is partially exhausted from the box,

and it is then sealed. Any change in the pressure of the at-

mosphere causes the corrugated top to move. This motion is

very slight, but is made perceptible, either by a combination of

levers, which amplifies it, or by an arm rigidly fixed on the

top, the motion of which is observed by a microscope. The
indications of the aneroid are compared with those of a stand-

ard mercurial barometer, and an empirical, scale is thus made,

by means of which the aneroid may be used to determine

pressures directly.

98. Limitations to the Accuracy of Boyle's Law.—In

all the previous discussions, we have dealt with gases as if they

obeyed Boyle's law with absolute exactness. This, however, is

not the case. In the first place, some gases at ordinary tem-

peratures can be liquefied by pressure. As these gases ap-

proach more nearly the point of hquefactibn, the product pv
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of the volume and pressure becomes less than it ought to be

in accordance with Boyle's law.

Secondly, those gases which cannot be liquefied at ordinary

temperatures by any pressure, however great, show a different

departure from the law. For every gas, except hydrogen,

there is a minimum value of the product pv. At ordinary

temperatures and small pressures the gas follows Boyle's law

quite closely, becoming, however, more compressible as the

pressure increases, until the minimum value of pv is reached.

It then becomes gradually less compressible, and at high pres-

sures its volume is much greater than that determined by
Boyle's law. If the temperature be raised, the agreement with

the law is closer, and the pressure at which the minimum value

oipv occurs is greater. Hydrogen seems to differ from the

other gases, only in that the pressures at whi6h the observa-

tions upon it were made were probably greater than the one at

which its minimum value of pv occurs. The volume of the

compressed hydrogen is uniformly greater than that required

by Boyle's law.

Important modifications are introduced into the behavior

of gases under pressure by subjecting them to intense cold.

It is then found that all gases, without exception, can be lique-

fied, and even solidified.

The subject is intimately connected with the subject of

critical temperature, and will be again discussed under Heat.



HEAT.

CHAPTER I.

MEASUREMENT OF HEAT.

99. General Effects of Heat.—Bodies are warmed, or

their temperature is raised, by heat. The sense of touch is

often sufficient to show difference in temperature; but the true

-criterion is the transfer of heat from the hotter to the colder

body when the two bodies are brought in contact, and no work

is done by one upon the other. This transfer is known by
some of the effects described below.

Bodies, iri general, expand when heated. Experiment shows

that different substances expand differently for the same rise

of temperature. Gases, in general, expand more than liquids,

and liquids more than solids. Expansion, however, does not

universally accompany rise of temperature. A few substances

-contract when heated.

Heat changes the state of, aggregation of bodies, always in

such a way as to admit of greater freedom of motion among
the molecules. The melting of ice and the conversion of water

-into steam are familiar examples.

Heat breaks up chemical compoiinds. The compounds of

-sodium, potassium, lithiuffi, and other metals, give to the flame

of a Bunsen lamp the characteristic colors of the vapors of the

-metals which they contain. This fact shows that the heat

-separates the metals from, their combinations.
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When the junction of two dissimilar metals in a conducting

circuit is heated, electric currents are produced.

Heat performs mechanical work. For example, the heat

produced in the furnace of a steam-boiler may be used to drive

an engine.

100. Production of Heat.—Heat is produced by various

processes, some of which are the reverse of the operations just

mentioned as the effects of heat. As examples of such reverse

operations may be mentioned, the production of heat by the

compression of a body which expands when heated ; the pro-

duction of heat during a change in the state of aggregation of

a body, when the freedom of motion among the molecules is

diminished ; the production of heat during chemical combina-

tion ; and the production of heat when an electric current

passes through a junction of two dissimilar metals in an oppo-

site direction to that of the current which is set up when the

junction is heated.

Heat is produced in general in any process involving the

expenditure of mechanical energy. The heat produced in such

processes cannot be used to restore the whole of the original

mechanical energy. The production of heat by friction is the

best example of these processes.

Further, an electric current, in a homogeneous conductor,

generates heat at every point in it, while, if every point in the

conductor be equally heated, no current will be set up.

These cases are examples of the production of heat by non-

reversible processes.

lOi. Nature of Heat.—Heat was formerly considered to

be a substance which passed from one body to another, lower-

ing the temperature of the one and raising that of the other,

which combined with solids to form liquids, and with liquids

to form gases or vapors. But the most delicate balances fail

to show any change of weight, when heat passes from one body
to another. Rumford was able to raise a considerable quan-
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tity of water to the boiling-point by the friction of a blunt

boring-tool within the bore of a cannon. He showed that the

heat manifested in this experiment could not have come from

any of the bodies present, and also that heat would continue

to be developed as long as the borer continued to revolve, or

that the supply of heat was practically inexhaustible. The
heat, therefore, must have been generated by the friction.

That ice is not melted by the combination with it of a

heat substance was shown early in the present century by
Davy. He caused ice to melt by friction of one piece upon

another in a vacuum, the experiment being performed in a

room where the temperature was below the melting-point' of

ice. There was no source from which heat could be drawn.

The ice must, therefore, have been melted by the friction.

Rumford was convinced that the heat obtained in his ex-

periment was only transformed mechanical energy; but to

demonstrate this it was necessary to prove that the quantity

of heat produced was always proportional to the quantity of

mechanical work done. This was done in the most complete

manner by Joule in a series of experiments extending from

1842 to 1849. He showed, that, however the heat was pro-

duced by mechanical means, whether by the agitation of water

by a paddle-wheel, the agitation of mercury, or the friction of

iron plates upon each other, the same expenditure of mechani-

cal energy always developed the same quantity of heat. Joule

also proved the perfect equivalence of heat and electrical

energy.

These experiments prove that heat is a form of energy.

Consistent explanations- of all the phenomena of heat may be

given if we assume that the molecules of all bodies are in con-

stant motion, that the temperature of a body varies with the

mean kinetic energy of its molecules, and that the heat in a

body is the sum of the kinetic energies of its molecules.
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THERMOMETRY.

102. Temperature.—Two bodies are said to be at the

same temperature when, if they be brought into intimate con-

tact, no heat, is transferred from one to the other. A body is

at a high temperature relatively to other bodies when it gives

up heat to them. The fact that it gives up heat may be shown

by its change in volume. A body is at a low temperature

when it receives heat from surrounding bodies. It is under-

stood, of course, in what is said above, that one body has" no

action upon the other ; in other words, no work is done by
one body upon the other when they are brought in contact.

103. Thermometers.—Experiments show that, in general,

bodies expand, and their temperature rises progressively, with

the application of heat. An instrument may be constructed

which will show at any instant the volume of a body selected

for the purpose. If the volume increase, we know that the

temperature rises; if the volume remain constant or diminish, H

we know that the temperature remains stationary or falls.

'

Such an instrument is called 2. thermometer

.

The thermometer rnost in use consists of a glass bulb with,

a fine tube attached. The bulb and part of the tube contain

mercury. In order that the thermometers of different inak-

ers may give similar readings, it is necessary to adopt two

standard temperatures which can be easily and certainly re-

produced. The temperatures adopted are the melting-point

of ice, and the temperature of steam from boiling water, -under

a pressure equal to that of a column of mercury 760 millime-

tres high at Paris. After the instrument has been filled with

mercury, it is plunged in melting ice, from which the water is
1

allowed to drain away, and a mark is made upon the stem op-

posite the end of the mei-cury column. It is then placed in a

vessel in which water is boiled, so constructed that the steam

rises through a tube surrounding t'he thermometer,' and then
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<iescends by an annular space between that tube and an outer

one, and escapes at the bottom. The -thermometer does not

touch the water, but is entirel]^ surrounded by steam. The
point reached by the end of the mercury column is marked on

the stem, as before. The space between these two marks is

then divided' into a number of equal parts.

While all makers of thermometers have adopted the same

standard temperatures,for the fixed points of the scale, they dif-

fer as to the number of divisions between these points. The
thermometers used for scientific purposes, and in general use in

France, have the space between the fixed points divided into

a hundred equal parts or degrees. The melting-point of ice is

marked o°, and the boiling-point ioo°. This scale is called

the Centigrade or Celsius scale. '

The Reaumur scale, in use in Germapy, has eighty degrees

between the melting- and boiling-points, and the boiling-point

is marked 8o°.

The Fahrenheit scale, in general use in England and Amer-

ica, has a hundred and eighty degrees between the melting-

and boiling-points. The former is marked 32°, and the latter

212°.

The divisions in all these cases are extended below the zero

point, and are numbered from zero downward. Temperatures

below zero must, therefore, be read and treated as negative

quantities.

A few points in the process of construction of a thermom-

eter deserve notice. It is found that glass, after it has been

heated to a high temperature and again cooled, does not for

some time return to its original volume. The bulb of a ther-

mometer must be heated in the process of filling with mercury,

and it will not return to its normal volume for some months.

The construction of the scale should not be proceeded with un •

til the reservoir has ceased to contract. For the same reason,

if the thermometer be used for high temperatures, even the
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temperature of boiling water, time must be given for the reser-

voir to return to its original volume before it is used for the

measurement of low temperatures.

It is essential that the diameter of the tube should be nearly

uniform throughout, and that the divisions of the scale should

represent equal capacities in the tube. To test the tube a

thread of mercury about 50 millimetres long is introduced, and

its length is measured in different parts of the tube. If the

length vary by more than a millimetre, the tube' should be re-

jected. If the tube be found to be suitable, a bulb is attached,,

mercury is introduced, and the tube sealed after the mercury

has been heated to expel the air. When it is ready for gradu-

ation, the fixed points are determined ; then a thread of mer-

cury having a length equal to about ten degrees of the scale is

detached from the column, and its length measured in all parts

of the tube. By reference to these measurements, the tube is

so graduated that the divisions represent parts of equal capac-

ity, and are not necessarily of equal length.

If such a thermometer indicate a temperature of 10°, this

means that the thermometer is in such a thermal condition that

the volume of the mercury has increased from zero one tenth

of its total expansion from zero to 100°. There is no reason

for supposing that this represents the same proportional rise of

temperature. If a thermometer be constructed in the manner
described, using some liquid other than mercury, it will not

in general indicate the same temperature as. the mercurial ther-

mometer, except at the two standard points. It is plain, there-

fore, that a given fraction of the expansion of a liquid from

zero to 100° cannot be taken as representing the same fraction

of the rise of temperature.

IQ4. Air Thermometer.—If a gas be heated, and , its vol-

ume kept constant, its pressure increases. For all the so-

called permanent gases—that is, those which are liquefied only

with great difficulty—the amount of increase in pressure for
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the same increase of temperature is found to be almost ex-

actly the same. This fact is a reason for supposing that the

increase of pressure is proportional to the increase of tempera-

ture. There are theoretical reasons, as will be seen later, for

the same supposition.

An instrument constructed to take advantage of this in-

crease in pressure to measure temperature is called an air ther-

mometer. A bulb so arranged that it may be placed in the

medium of which the temperature is to be determined, is filled

with air or some other gas, and means are provided for main-

taining the volume of the gas constant, and measuring its pres-

sure. For the reasons given above, the air thermometer is

taken as the standard instrument for scientific purposes. Its

use, however, involves several careful observations and tedious

computations. It is, therefore, mainly employed as a standard

with which to compare other instruments. If we make such.

a

comparison, and construct a table of corrections, we may re-

duce the readings of any thermometer to the corresponding

readings of the air thermometer.

105. Limits in the Range of the Mercurial Thermom-
eter.—The range of temperature for which the mercurial ther-

mometer may be employed is limited by the freezing of the

mercury on th,e one hand, and its boiling on the other. For

temperatures below the freezing-point of mercury, alcohol

thermometers may be employed. For the measurement of

high temperatures, several different methods have been em-

ployed. One depends upon the expansion of a bar of plati-

num, another upon the variation in the electric resistance of

platinum wire, another upon the strength of the electric cur-

rent generated by a thermo-electric pair, another on the density

of mercury vapor. This last method is carried out as follows:

A globe of refractory material, fitted with a short tube with a

small bore, contains a small quantity of mercury. It is placed

-in the furnace or other place, the temperature of which is to
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be measured. The mercury boils, the air and the excess of

mercury are expelled, and the globe is finally left full of mer-

cury vapor at the temperature of the furnace. The globe ia

cooled, and the weight of )the mercury left in it determined.

From this and the volume of the globe the teinperature can

be computed.

io6. Registering Thermometers.—Maximum and mini-

mum thermometers are employed to register the highest and

lowest temperatures reached during a given period. By a

change in construction, the ordinary mercury thermometer be-

comes a self-registering maximum thermometer. This change

consists in making a contraction in the tube just .above the

reservoir, to such an extent that, though the mercury is pushed
through it as the temperature rises, it does not return as the

temperature falls. It thus serves as an index to show the high-

est temperature reached during the period of its exposure.

After an observation has been made, the thermometer is re-

adjusted for a new observation by allowing the instrument to

swing out of the horizontal position in which it usually rests,

about a point near the upper extremity of the tube.

In the construction of the minimum thermometer, alcohol

is the liquid employed. Before sealing, an index of glass,,

smaller in diameter than the bore of the tube, is inserted..

When the instrument is adjusted for use, this is brought in

contact with the extremity of the column, and the tube is.

placed in a horizbntal position. If, now, the alcohol expand,

it will flow past the index without moving it ; but if it con-

tract, it will, by adhesion, draw the index, after it. The mini-

mum temperature is thus registered.

Registering thermometers have been made to give a con-

tinuous record of changes of temperature. One method bf

effecting this is to produce. an image of the thermometer tube^ V

which is strongly illuminated by a light placed behind it, upon
a screen of sensitized paper which moves continuously by means
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•of clockwork. Light is excluded from the whole of the paper,

except the part that corresponds to the image of the tube

above the mercury. This part of the paper is blackened by

the light ; and, as the paper moves, the edge of the blackened

portion will present a sinuous line corresponding to the move-

ments of the mercury of the thermometer.

CALORIMETRY.

107. Unit of Heat.—It is evident that more heat is required

to raise the temperature of a large quantity of a substance

through a given number of degrees than to raise the tempera-

tu'i'e of a small quantity of the same substance through the

same number of degrees. It is further evident that the suc-

cessive repetition of any pperation by which heat is produced

will generate more heat than a single operation. Heat is

therefore a quantity the magnitude of which may be expressed

in terms of some unit. The unit of heat generally adopted is

the heat required to raise the temperature of one kilogram of

water from zero to one degree. It is called a calorie.

It is sometimes convenient to employ a smaller unit, name-

ly, the quantity of heat necessary to raise one grain of water

from zero to one degree. This unit is designated as the lesser

calorie. It is one one-thousandth of the larger unit. It may,

therefore, be called a millicalorie.

The fact that heat is energy enables us to employ still

another unit. It is that quantity of heat which is equivalent

to an erg. This unit is called the mechanical unit of heat. A
calorie contains about 41,595,000,000 mechanical units.

108. Heat required to raise the Temperature of a

Mass of Water.—It is evident that to raise the temperature

; of m kilograms of water from zero to one degree will require

m calories. If the temperature of the same quantity of water

fall from one degree to zero, the same quantity of heat is given

to surrounding bodies.
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Experiment shows, that, if the same quantity of water be

raised to different temperatures, quantities of heat nearly pro-

portional to the rise in temperature will be required : hence,

to raise the temperature of m. kilograms of water from zero to

t degrees requires mt calories very nearly. This is shown by

mixing water at a lower temperature with water at a higher

temperature. The temperature of the mixture will be almbst

exactly the mean of the two. Regnault, who tried this experi-

ment with the greatest care, found the temperature of the

mixture a little higher than the mean, and concluded that the

quantity of heat required to raise the temperature of a kilo-

gram of water one degree increases slightly with the tempera-

ture ; that is, to raise the temperature of a kilogram of water

from twenty to twenty-one degrees, requires a little more heat

than to raise the temperature of the same quantity of water
,

from zero to one degree.

Rowland found, by mixing water at various temperatures,

and also by measuring the energy required to raise the tem-

perature of water by agitation by a paddle-wheel, that, when
the air thermometer is taken as a standard, the quantity of

heat necessary to raise the temperature of a given quantity of

water one degree diminishes slightly from zero to thirty de-

grees, and then increases to the boiling-point.

109. Specific Heat.—Only one thirtieth as much heat is

required to raise the temperature of a kilogram of mercury

from zero to one degree as is required to raise the temperature

of a kilogram of water through the same range. In order to

raise th6 temperatures of other substances through the same

range, quantities of heat peculiar to each substance are required.

The quantity of heat required to raise the temperature of

one kilogram of a substance from zero to one degree is called

the specific heat of the substance.

If the temperature of one kilogram of a substance rise from

t, to /, the' limit of the ratio of the' quantity of heat required to
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bring about the rise in temperature to the difference in tem-

perature, as that difference diminishes indefinitely, is called the

Specific heat of the substance at temperature./. If we represent

the quantity of heat by Q, the limit of the ratio = -j-

expresses this specific heat.

The specific heats of substances are generally nearly con-

stant between zero and one hundred degrees. The meUn spe-

cific heat of a substance between zero and one hundred degrees

is the one usually given in the tables.

The measurement of specific heat is one of the important

•objects of calorimetry.

no. Ice Calorimeter.

—

Black's ice calorimeter consists of

^ block of pure ice having a cavity in its interior covered by a

thick slab of ice. The body of which the specific heat is to

be determined is heated to t degrees, then dropped into the

cavity, and immediately covered by the ;slab. After a short

time the temperature of the body falls to zero, and in so doing

-converts a certain quantity of ice into water. This water is

removed by a sponge of known weight, and its weight is deter-

mined. It will be shown, that to melt a kilogram of ice re-

quires 80 calories ; if, then, the weight of the body be P, and

its specific heat x, it gives up, in falling from / degrees to

zero, Pxt calories. On the other hand, if / kilograms of ice

be melted, the heat required is Zop. Therefore Pxt = 80/ ;

whence

^ = ^. (38)

Bunsen's ice calorimeter (Fig. 44) is used ,for determining

the specific heats of substances of which only a small quantity

is at hand. The apparatus is entirely of glass. The tube B is

filled with water and mercury, the latter extending into the

.
graduated capillary tube C. To use the apparatus, alcohol
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Fig. 44.

which has been artificially cooled to a temperature below zero-

is passed through the tube A. A layer of ice forms around

the outside of this tube. As water

freezes, it expands. This causes the

mercury to advance in the capillary

tube C. When a suflficient quantity

of ice has been formed, the alcqhol

is removed from A, the apparatus is

surrounded by melting snow or ice,

and a small quantity of water is in-

troduced, which soon falls in tem-

perature to zero. The position of the

mercury in C is now noted ; and the

substance the specific heat of which

is to be determined, at the tempera-

ture of the surrounding air, is dropped into the water in A.

Its temperature quickly falls to zero, and the heat which it

loses is entirely employed in melting the ice which surrounds

the tube .(4. As the ice melts, the mercury in the tube C re-

treats. The'change of position is an ihdication of the quantity

of ice melted, and the quantity of ice melted measures the

heat given up by the substance. The number of divisions of

the tube C corresponding to one calorie can be determined by

direct experiment. To make this determination, the opera-

tion is performed as described above, using a substance of a

known specific heat c. If its mass be/ and its temperature t,

it gives up, in cooling to zero, cpt calories. If the mercury

retreat at the same time n divisions, one division co);-responds

If, now, a mass /' of a substance at a tempera-

ature t' be introduced, and the mercury fall n' divisions, the

number of calories which must have been given to the ice is

n'cpt

cpt , .

to ^^— calories.
n

, and the specific heat of the substance is

n'cpt
(39)
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III. Method of Mixtures.—The method of mixtures con-

sists in bringing together, at different temperatures, the sub-

stance of which the specific heat is desired and another of which

the specific heat is kno^frn, and noting the change of tempera-

ture which each undergoes.

The water calorimeter consists of a vessel of very thin copper

or brass, highly polished, and placed within another vessel upon

non-conducting siipports. A mass Poi the substance of which

the specific heat is to be determined is brought to a tempera-

ture ti in a suitable bath, then plunged in water at the tem-

perature t, contained in the calorimeter. The whole will soon

come to a common temperature 6.

The substance loses Px {t,— 6) calories.

The heat gained by the calorimeter consists of the heat

gained by the water, p{d— t); the heat gained by the vessel,.

p'c' {d— t); the heat gained by the glass stirrer and the glass

of the thermometer, p"c" {0— t); the heat gained by the mer-

cury of the thermometer p"'c"' {6—t) : where / represents the

mass of the water,/' the mass of the vessel, /" the mass of the

glass of the stirrer and of the thermometer, /'" the mass of the

mercury of the thermometer, c' the specific heat of the material

of the vessel, c" the specific heat of glass, and c"' the specific

heat of mercury. If no heat be lost or gained by radiation, the

heat lost by the substance is equal to that gained by the calori-

meter: ,

'

whence Px{t, - 6) = {p -{-p'c' -f/'V +/"V")(^ - t). (40)

To determine x from this formula, c', c", and c'" must be

known. Approximate values of these may be obtained and

used in the formula, but it is better to determine the value of

p'c' -\-p"c" -\-p"'c"' = Pi by experiment. Let a mass of water,

P, at a temperature t, be substituted for the substance of which

the specific heat was to be determined in the. experiment de-

scribed above. The equation will then become

P{t-6) = {p^P){d-t), (41)
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in which p^ is the only unknown quantity, p, is the water

equivalent of the calorimeter and accessories. It is determined,

once for,aU, as just described.

There is a source of error in the use' of the instrument, due

to the radiation of heat during the experiment. This error

may be nearly eliminated, by making a preliminary experiment

to determine what change of temperature the calorimeter will

experience ; then, for the final experiment, the calorimeter and

its contents are brought to a temperature below the tempera-

ture of the surrounding air, by about half the amount of that

change. The calorimeter will then receive heat from the sur-

rounding medium during the first part of the experiment, and

lose heat during the second part. The rise of temperature is,

however, much more rapid at the beginning than at the end of

the experiment. The rise from the initial temperature to the

temperature of the surrounding medium occupies less time than

the rise from the latter to the final temperature. The gain of

heat, therefore, does not exactly compensate for the loss. If

greater accuracy tje required, the rate of cooling of the calori-

meter must be determined by putting into it warm water, the

same in quantity as would be used in experiments for deter-

mining specific heat, and noting its temperature from minute

to minute. Such an experiment furnishes the data for com-

puting the loss or gain by radiation. To secure accurate re-

sults the body must be transferred from the bath to the calori-

meter without sensible loss of heati

112. Method of Comparison.—The method of comparison

consists in conveying to the substance of which the specific

heat is to be determined a known quantity of heat, and com-

paring the consequent rise of temperature with that produced

by the same amount of heat in a substarice of which the speci-

fic heat is known. In the early attempts to use this method,

the heat produced by the same flame burning for a given time

was apphed sucqessively to different liquids. A more exact



113] MEASUREMENT OF HEAT. IS7

method was the combustion, within the calorimeter, of a known
weight of hydrogen. The best method of obtaining a known
quantity of heat is by means of an electrical current of known
strength, flowing through a wire of known resistance wrapped

upon the calorimeter.

113.. Method of Cooling.—The method of cooling consists

in noting the time required for the calorimeter, in a space kept

constantly at zero, to cool from a temperature t' to

a temperature t, .when empty ; when containing a

given weight of water ; and when containing a given

weight of the substance of which the specific heat

is sought. The thermo-calorimeter' of Regnault, rep-

resented in Fig. 45, is an example. It consists of an

alcohol thermometer, with its bulb A enlarged and

made in the form of a hollow cylinder, inside of

which the substance is placed. The thermometer is

warmed, and then placed in a vessel surrounded by
melting ice. It radiates heat to the sides'of the ves-

sel, and the column of alcohol in the tube falls. Let

X be the time occupied in falling from the division n a

to the division n' when the space B is empty. Let

the times occupied in falling between the same two
divisions, when the space B contains a mass P of

water, and when it contains a mass P of the sub-

stance of which the specific heat c' is sought, be re- fig. 45.

spectively x' and x" . Let M be the water equivalent of the

instrument. We then have

xy

M M-{-P _ M±Fc'— / — // ~ •

X X X

since, under the conditions of the experiment, the heat lost per

second must be the same in each case.
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Eliminating M, we obtain

/' = ?(p^]- ' (42)

114. Determination of the Mechanical Equivalent of

Heat.—It has been stated that whenever heat is produced by

the expenditure of mechanical energy, the quantity of heat pro-

duced is always proportional to the quantity of mechanical

energy expended.

The mechanical equivalent of heat is the energy in mechan-

ical units, the expenditure of which produces the unit of heat.

Heat applied to a body may increase the motion of its

molecules ; that is, add to their kinetic energy. It may per-

form internal work by moving the molecules against molecular

forces. It may perform external work by producing motion
-against external forces. If we could,- estimate these effects -in

mechanical units, we' might obtain the mechanical equivalent

of heat. But the kinetic energy of the molecules cannot be

estimated, for we do not know their mass nor their velocity. -.

We must, therefore, in the present state of our knowledge,

resort to direct experiment to determine the heat equivalent.

In one of the experiments of Joule, already referred to, a pad-,

die-wheel was made to revolve, by means of weights, in a vessel

filled with water. In this vessel were stationary wings, to pre-

vent the water from acquiring a rotary motion with the paddle-

wheel. By the revolution of the wheel the water was warmed.
The heat so generated was estimated from the rise of tempera-

ture, while the mechanical energy required to produce it was
given by the fall of the 'driving-weight. Joule repeated this

experiment, substituting mercury for the water. In another

experiment he substituted an iron plate for the , paddle-wheel,

and made it revolve with friction upon a fixed iron plate under
Tvater.
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Joule expressed his results in kilogram-metres—that is,

the work done by a kilogram in falling under the force of

gravity through one metre. He stated the mectianical equiva-

lent of one calorie, in this unit, to be 423.9, from the experi-

ments with water; 425.7, from those with mercury; and 426.1,

irom those with iron plates. He gave the preference to the

.-o

Fig. 46.

smallest value, and it has been generally accepted as the

mechanical equivalent. This mechanical equivalent is called

Joule's equivalent, and is represented by /. In absolute units it

is about 41,595,000,000 ergs per calorie.

Rowland has repeated Joule's experiment with water ; but

he caused the paddle-wheel to revolve by means of an engine,

-and determined the moment of the couple required to prevent
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the revolution of the calorimeter. Fig. 46 shows the appara-

tus. The shaft of the paddle-wheel projects through the bot-

tom of the calorimeter, and is driven by means of a bevel-gear.

The vessel A is suspended from C by a torsion wire, and its

tendency to rotate balanced by weights attached to cords,

which act upon the circumference of a pulley D. By this dis-

position of the apparatus he was able to expend about one half

a horse-power in the calorimeter, and obtain a rise of tempera-

ture of 35" per hour; while in Joule's experiments the rise of

temperature per hour was less 'than 1°. These experiments

give, for the mechanical equivalent of one calorie at 5°, 439.8

kilogram-metres ; at 20°, 426.4 kilogram-metres.

Several other methods have been employed for determining

the mechanical equivalent. The concordance of the results by
all these methods is sufificient to warrant the statement that

the expenditure of a given amount of mechanical energy
always produces the same amount of heat.



CHAPTER II.

TRANSFER OF HEAT.

115. Transfer of Heat.—In the preceding discussions it

has been assumed that heat may be transferred from one body

to another, and that' if two bodies in contact be at different

temperatures, heat will be transferred from the hotter to the

colder body. In general, if transfer of heat be possible in any

system, heat will pass from the hotter to the colder parts of

the system, and the temperature of the system will tend to

become uniform. There are three ways in which this transfer

is accomplished, called respectively convection, conduction, and

radiation.

116. Convection.—If a vessel containing any fluid be heated

at the bottom, the bottom layers become less dense than those

above, producing a condition of instability. The lighter

portions of the fluid rise, and the heavier portions from above,

coming to the bottom, are in their turn heated. Hence con-

tinuous currents are caused. This process is called convection.

By this process, masses of fluid, although fluids are poor con-

ductors, may be rapidly heated. Water is often heated in a

reservoir at a distance from the source of heat by the circula-

tion produced in pipes leading to the source of heat and back.

The winds and the great currents of the ocean are convection

currents. An interesting result follows from the fact that

water has a maximum density (§ 135). When the water of lakes

cools in winter, currents are set up and maintained, so long as

the surface water becomes more dense by cooling, or until the

whole mass reaches 4°. Any further cooling makes the
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surface water lighter. It therefore rerriains at the surface, and

its temperature rapidly falls to the freezing-point, while the great

mass of the water remains it the temperature of its maximum
density.

117. Conduction.—If one end of a metal rod be heated, it

is found that the heat travels along the rod, since those

portions at a distance from the source of heat finally become
warm. This process of transfer of heat from molecule to mole-

cule of a body, while the molecules themselves retain their

relative places, is called conduction.

In the discussion of the transfer of heat by conduction it is

assumed as a principle, borne out by experinient, that the flow

of heat between two very near parallel planes, drawn in a sub-

stance, _is proportional to the difference of temperature be-

tween those planes. ^

118. Flow of Heat across a Wall.—To study the transfer

of heat by conduction, we will consider what takes place: in a

wall of homogeneous material, the exposed surfaces of which,

assumed to be of indefinite extent, are maintained at a con-

stant difference of temperature. Suppose the wall to be cut

by a series of planes parallel to the exposed surfaces ; and that

the state of the body, as respects temperature, has become per-

manent. Then we will show that there must be the same flow

of heat across all parallel sections, and also that there must be

a uniform fall of temperature from one side of the wall to the

other,—that is, that if t'— t represent the difference of temper-

ature between the two exposed surfaces, and d the thickness

t' — t
of the wall, —j— is the fall of temperature per unit thickness,

t' — t
and t' -1

—

d' is the temperature at a distance d' from the

warmer surface.

To demonstrate this, suppose A (Fig. 47) to be one exposed
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surface at temperature t' , and B the other surface at temper-

ature t\ suppose «, a', a", to, be three surfaces

parallel to the faces of the wall, and at veryi small

equal distances from one another. Suppose the

temperatures to exist according to the law stated

in the proposition : then the difference of temper-

ature between a and a' will be the same as between

a' and a". It has been stated that the flow of heat

between two points in a body is proportional to the

difference of temperature between those points.

Experiment shows that it depends also upon the

distance between them, the nature of the material,

and to a very limited extent upon the temperature ^'°" *''

itself. The effect of this last factor may, however, be neg-

lected, since the pairs of surface considered are nearly at the

same temperature. The other factors being the same for

both pairs, it follows that there will be the same flow of heat

from a to a' as from a' to a" . The same will hold true

for any other set of surfaces parallel to the faces of the wall

:

hence the molecules in any surface such as a' receive and part

with equal amounts of heat, and can neither rise nor fall in

temperature. If the temperatures, therefore, were once estab-

lished in accordance with the law enunciated, they could never

change. On the other hand, if the difference of temperature

,
between a and a were greater than that between a! and a'!

,

. the molecules in a' would receive more heat than they would

part with, their temperature would rise, and this would tend

to equalize these differences. The proposition is therefore

demonstrated,

119. Flow Proportional to Rate of Fall of Tempera-
ture.—It can be further shown that the flow of heat across

walls of the same material is directly proportional to the

differences of. temperature between the faces of the walls, and

inversely proportional to the thicknesses of the walls. Repre-
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sent the thicknesses of two walls A and Bhy d and S respec-

tively, the temperatures of the exposed surfaces of A by t' and

t, and 'of B by 6' and 6. Assume two planes in each wall parallel

to the exposed surfaces, at very small equal distances apart, and
similarly situated. The flow of heat in each wall, from the one

plane to the other, will be proportional only to the differ-

ences of temperature, since all other things are equal. If e

e
be the common distance between the planes, :^{t' --^ t) will be

the difference of temperature between the planes in A, and
6
~{6' — 6) will be the same in B; hence we have

t( '
t' — t

flow of heat between the planes in A _d^ ~ ' _ ^
fi^w of heat between the planes in B ~~

e
~ 0' — d'

This proves the proposition, since the heat which flows across

the wall is the same as that which flows between any two

'

planes.

t' — t
It will be seen that —-j— is the rate of fall of temperature

at the section considered ; and it follows, finally, that the flow

of heat across any section parallel to the exposed surfaces of a

wall is proportional to the rate of fall of temperature at that

section.

120. Conductivity.—If, now, we consider a prism extend-
ing across the wall, bounded by planes perpendicular to the
exposed surfaces, and represent the area of its exposed bases
by A, the quantity of heat which flows in a time T through
this prism may be represented by

^ = ^'-^^^'. (43)
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where isT is a constant depending upon the material oif which

the wall is composed. K is the conductivity of the substance,

and may be defined as the quantity of heat which in unit time

flows through a section of unit area in a wall of the substance

whose thickness is unity, when its exposed surfaces are main-

tained at a difference of temperature of one degree ; or, in

other wordsj it is the quantity of heat which in unit time flows

through a section of unit area in a substance, where the rate of

fall of temperature at that section is unity. In the above dis-

cussions the temperatures t' and t are taken as the actual tem-

peratures of the surfaces of the wall. If the colder surface of

the wall be exposed to air of temperature T, to which the heat

which traverses it is given up, t will be greater than T. The
difference will depend upon the quantity of heat which flows,

and upon the facility with which the surface parts with heat.

121. Flow of Heat along a Bar.—If a prism of a sub-

stance have one of its bases maintained at a temperature t,

while the other base and the sides are exposed to air at a

lower temperature, the conditions of uniform fall of. tempera-

ture no longer exist, and the amount of heat which flows

through the different' sections is no longer the same ; but the

amount of heat which flows through any section is still pro-

portional to the rate of fall of temperature at that section, and

is equal to the heat which escapes from the portion of the bar

beyond the section.

122. Measurement of Conductivity.—A bar heated at one

end furnishes a convenient means

of measuring conductivity. In Fig.

48 let AB represent a bar heated at

A. Let the ordinates aa' , bb' , cc',

represent the excess of temperatures

above the temperature of the air at

the points from -which they are

drawn. These temperatures may be determined by means of
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thermometers inserted in cavities in the bar, or hy means of a

thermopile. Draw the curve a'b'c'd'

.

, , through the summits

of thei ordinates. The inclination of this curve at any point

represents the rate of fall of temperature at that point.

The ordinates to the line d'm, drawn tangent to the curve at

the point ^',' show what would be the temperatures at various

points of the bar if the fall were uniform and at the same rate

as at d'. It shows that, at the rate of fall at d', the bar would
at tn be at the temperature of the air ; or, in the length 3m,

the fall of temperature would equal the amount represented

by I'd'. The rate of fall is, therefore, r— . If Q represent the

quantity of heat passing the section at d in the unit time, we
have, from § 120,

Q — Kx rate offall of temperature X area of section.

Q is equal to the quantity of heat that escapes in unit time
from all that portion of the bar beyond b. It may be found

by heating a short piece of the same bar to a high temperature,

allowing it to cool under the same conditions that surround
the bar AB, and observing its temperature from minute ta
minute as it falls. These observations furnish the data for

computing the quantity of heat which escapes per minute from
unit length of the bar at different temperatures. It is then
easy, to compute the amount of heat that escapes per minute
from each portion, be, cd, etc., of the bar beyond b ; each portion

being taken so short that its temperature throughout may,
without sensible error, be considered uniform and the same as

that at its middle point. Summing up all these quantities, we
obtain the quantity Q which passes the section b in the unit

time. Then

^^ Q
rate offall of temperature at b Xarea of section
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; 123. Conductivity diminishes as Temperature rises.—
By the method described above, Forbes determined the'»con-

ductivity of a bar of iron at points at different distances from

the heated end, and found that the conductivity is not the

same at all temperatures, but is greater as the temperature is

lower.

124. Conductivity of Crystals.—The conductivity of crys-

tals of the isometric system is the same in all directions, but

in crystals of the other systems it is not so. In a crystal of

Iceland spar the conductivity is greatest in the direction of the

, axis of symmetry, and equal in all directions in a plane at right

angles to that axis.

125. Conductivity of Non-homogeneous Solids.—De la

Rive and De CandoUe were the first to show that wood con-

ducts heat better in the direction of the fibres- than at right

angles to them. Tyndall, by experimenting upon cubes cut

from wood, has shown that the conductivity has a maximum
value parallel to the fibres, a minimum value at right angles to

the fibres and parallel to the annual layers, and a medium
value at right angles to both fibres and annual layers. Feath-

ers, fur, and the materials of clothing, are poor conductors be-

cause of their want of continuity.

126. Conductivity of Liquids.—^The conductivity of liquids

can be measured, in the same way as that of solids, by noting

the fall of temperature at various distances front the source of

heat in a column of liquid heated at the top. Great care must
be taken in these experiments to avoid errors due to convec-

tion currents.

Liquids are generally poor conductors.

127.' Radiation.—We have now considered those cases in

which there is a transfer of heat between bodies in contact.

Heat is also transferred between bodies not in contact. This

is effected by a process called radiation, which will be subse-

quently considered.



CHAPTER III.

EFFECTS OF HEAT. '

SOLIDS AND LIQUIDS.

128. Expansion of Solids.—When heat is applied to a

body it increases the kinetic energy of the molecules, and also

increases the potential energy, by forcing the molecules farther

apart against their mutual attractions and any external forces

that may resist expansion. Since the internal work to be done

when a solid or liquid expands varies greatly for different sub-

stances, it might be expected that the amount of expansion

for a given rise of temperature would vary greatly.

In studying the expansion of solids, we distinguish linear

and voluminal expansion.

The increase which occurs in the unit length of a substance

for a rise of temperature from zero to i'' C. is called the coeffi-

cient of linear expansion. Experiment shows that the expan-

sion for a rise of temperature of one degree is very nearly con-

stant between zpro and 100°.

Represent by /„ the distance between two points in a

body at zero, by k the distance between the same points at the

temperature t, and by a the coefficient of linear expansion of

the substance of which the body is composed.

The increase in the distance /„ for a rise of one degree in

temperature is «/„, for a rise of t degrees atl^. Hence we
have, after a rise in temperature of t degrees,

It = /o(i + «0. (44)
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and /,= ^'

or approximately, /„ = /^(i — ai).

The binomial i -|- '''^ is called the factor of expansion.

In the same way, if k represent the coefficient of voluminal

expansion, the volume of a body at a temperature t will be

Vt = Vli^kt); .(45)

and if d represent density, since density is inversely as vol-

ume, we have

^^-TTkt' <46)

For a homogeneous solid, the coefficient of voluminal ex-

pansion is three times that of linear expansion ; for, if the

temperature of a cube, with an edge of unit length, be raised

one degree, the length of its edge becomes \ -\- a, and its vol-

ume I + 3a + 3«°+ oc'. Since a is very small, its square and

cube may be neglected ; and the volume of the cube after a

rise in temperature of one degree is i + 30;. 30; is, therefore,

the coefificient of voluminal expansion.

129. Measurement of Coefficients of Linear Expansion.

—Coefficients of linear expansion are measured by comparing

the lengths, at different temperatures, of a bar of the substance

the coefficient of which is required, with thelength, at constant

temperature, of another bar. The constant temperature of the

latter bar is secured by immersing it in melting ice. The bar,

the coefficient of which is sought may be brought to different

temperatures by immersing it in a liquid bath ; but it is found

better to place the bar upon the instrument by means of which
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the comparisons are to be made, and leave it for several hours

exposed to the air of the room, which is kept at a constant

temperature by artificial means. Of course several hours must

elapse between any two comparisons by this method, and its.

application is restricted to such ranges of temperature as may
be obtained in occupied rooms ; but within this range the ob-

servations can be made much more accurately than would be

the case when the bar is immersed in a bath, and it is within

this range that an accurate knowledge of coefficients of expan-

sion is of most importance.

130. Expansion of Liquids.—In studying the expansion

of a liquid, it is important to distinguish its absolute expansion,,

or the real increase in volume, and its apparent expansion, or its

increase in volume in comparison with that of the containing

vessel.

131. Absolute Expansion of Mercury.—A knowledge of

the coefficients of expansion of nierciiry is of the greatest im-

portance, since mercury is made use of for so many purposes in

physical research. Regnault has made the most accurate de-

terminations of these constants.

To determine the absolute coefficient, the Experiment must
be so made that the expansion of the vessel shall not influence

the result. '

Regnault's method consists in comparing the heights of two

columns of mercury, at different temperatures, which produce

the same pressure. Two vertical tubes, ab, a'b' (Fig. 49),, are

connected at the top by a horizontal tube aa' , and at the bot-

tom by a tube bcdd'c'b' , a part of which is of glass, and shaped

like an inverted u. The top of the inverted U-tube is connected

by a tube e with a vessel f, in which air can be maintained at

any desired pressure. When these tubes are filled with mer-

cury, it flows freely from one to the other at the top ; but the

flow of mercury between them at the bottom is prevented by
air imprisoned in the U-tube, while the pressure is transmitted.
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^%S=^

undiminished. The pressure at each end of the column of im-

prisoned air must, therefore, be the

same ; and, since a and a' are connected

by a horizontal tube, the pressures at

those points are the same also ; hence

the difference of pressure between a

and d must be equal to the difference

between a' and d! ; and from § 86 it fol-

lows that the heights of the columns,

without regafd to the diameters of the

tubes, producing this difference, are in-

versely proportional to their densities.

If, now, one branch be raised to the

temperature t, while the other remains

at zero, the mercury in the U-tube will

assume different levels. Measuring the

height of each column from the surface

of the mercury in the U-tube to the

horizontal tube at the top, we have, from Eq. (46), if h and h'

represent the height of the cold and warm columns respec-

tively,

h__d' ' I

^ , k'

Fig. 49.

d '^ i-\-ki'

h! -h\

ht

(47)

132. Apparent Expansion of Mercury.—If a glass bulb

(Fig. 50), furnished with a capillary tube, be filled with mer-

cury at zero, and heated to a temperature t, some of the mer-

cury runs out. The amount which overflows evidently de^-

pends upon the difference of expansion between the mercury

and the glass. Let P represent the mass of mercury that fills
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K
the bulb and tube at zero. After heating, there remains in

the bulb a mass P—p oi mercury, which at zero

i]
occupies the volume ab. The mass of mercury/,

which runs out, would at the same temperature

fill the remainder of the bulb and tube. Hence

the volume alf equals —-y^, where d represents the

"^^-^
density of mercury. The volume above b equals C

The "mercury in ab, when heated to the temperature /, just

P
fills the tube ; and its apparent volume is j. If k represent

the coefficient of apparent expansion,

P P—p
a = -r^' + '<')' (48)

or

PK
iP-PY

If we know k, the instrument may be used as a thermometer

;

for, suppose it filled at zero, and subjected to an unknown

temperature t^, we shall have, it /, represent the mercury that

then runs over,

P={P-Pr){i-¥'<i), (49)

whence

'~{.p-py

The instrument is, therefore, called a weight thermometer.

The difference between the value k, found above, and the
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absolute coefficient k is due to the expansion of the glass.

And if k be the coefficient for glass, we have

for, referring again to Fig. 50, the volume of the vessel at zero

P P
is J, and at the temperature t is ^(i

"l"
k't), which, from Eq.

(48), equals

- The real volume at the temperature t of the mercury re-

maining in the tube is

Hence

P—p '

—jHi + kt).

{i + Kt){i + k't) = {i-\-kt);

(I _|_ a:^ _|_ k't+ Kk'f) = l-{-kt.

Since k and k' are small quantities, their product may be neg-

lected; hence

k' = k — K. (50)

133. Determination of Voluminal Expansion of Sol-

ids.---The weight thermometer may be used to determine the

coefKcient of voluminal expansion of solids. For this purpose,

the solid, of which the volume at zero is known, must be intro-

duced into the bulb by the glass-blower. If the bulb contain-

ing the solid be filled with mercury at zero, and afterward

heated to the temperature t, it is evident that the amount of

mercury that will overflow will depend upon the coefficient of
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expansion of the solid, and upon the coefficient of apparent ex-

pansion of riiercury. If the latter has been determined for the

kind of glass used, the former can be deduced. By this means
the coefficients of voluminal expansion of some solids have
been determined ; and the results are found to verify the con-

clusion," deduced from theory (§ 128), that the voluminal co-'

efficient is three times the linear.

134. Absolute nExpansion of Liquids other than Mer-
cury.—^The weight thermometer may also serve to determine

the coefficients of expansion of liquids other than mercury ; for,

if k' has been found as described above, the instrument may
be filled with the liquid the coefficient of which is desired, and.

the apparent expansion of this liquid found exactly as was that

of mercury. The absolute coefficient for the liquid is then the

sum of the coefficient of apparent expansion and the coefficient

for the glass.

135. Expansion of Water.—The use of water as a stand-

ard with which to compare the densities of other substances =

makes it necessary to know, not merely its mean coefficient of

expansion, but its actual expansion, degree by degree. This is

the more important since water expands very irregularly. The
best determinations of the volumes of water at different tem-

peratures are those of Matthiessen. The method which he
employed was to weigh in water a mass of glass of which the

coefficient of expansion had been previously determined.

Water contracts, instead of expanding, from 0° to 4° ; from

that temperature to its boiling-point it expands.

136. Correction Introduced in the Determination of

Specific Gravity.—Water at its maximum density, at 4°, is

the standard to which are referred the specific gravities of solids

and liquids. Since it is seldorii practicable to make the deter-

minations at that temperature, corrections must be made as

follows

:

Let Ait represent the density of a substance at the tempera-
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_

—

ture t compared to water at the same temperature. Let At rep-

resent the density of the substance at f compared to water at 4°.

Then At = An X dt, where dt represents the density of water

at t° ; for, if W represent the mass of the substance, W( the

mass of an equal volume of water at t°, and W^ the mass of the

W < Wi
same volume of water at 4°, we have J« = -^- , dt = -jj-/-, and

W W Wi
^* — W '^^^"'^^ ^t^yir X-j^ = AiiXdi. If J„ repre-

sent the density of a substance at 0°, A^^ A t(i-\- kt), where k
represents the coefficient of voluminal expansion of the sub-

stance.

137. Effect of Variation of Temperature upon Specific

Heat.—It has already been seen (§ 109) that the specific beat

of bodies changes with temperature. With most substances

the specific heat increases as the temperature rises.

For example, the true specific heat of the diamond

At 0° is 0.0947

At 50° is 0.1435

At 100° is 0.1905

At 200° is 0.2719

138. Effect of Change of Physical State upon Specific

Heat.—The specific heat of a substance is not the same when
in the solid as when in liquid state. In the solid state of the

substance it is generally less than in the liquid. For example

:

Mean Specific Heat

Solid. Liquid.
Water, 0.504 i.ooo

Mercury, 0.0314 0.333
Tin 0.056 0.0637
Lead 0.0314 0.0402

139. Atomic Heat.—It has been found that the product
of the specific heat by the atomic weight of any simple body
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is a constant quantity. This law is known from its discoverers

as the law of Dulong and Petit.

This law may be otherwise stated, thus : that to raise the

temperature of an atom of any simple substance one degree,

an amount of heat is required which is the same for all sub-

stances.

The experiments of Regnault show that this law may be

extended to compound bodies ; that is, for all compounds of

similar chemical composition the product of the total chemical

equivalent by the specific heat is the same.

The following table will illustrate the law of Dulong and

Petit. The atomic weights are those given by Clarke.

Elements.

Iron, - .
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parts bismuth, melts at 94° ; while the lowest melting-point

of its constituents is that of tin, 228°. An alloy of lead, tin,

bismuth, and cadmium melts at 62°.

If a liquid be placed in a medium the temperature of which

is below its melting-point, it will, in general, begin to solidify

when its temperature reaches its melting-point, and it will re-

main at that temperature until it is all solidified. Under cer-

tain conditions, however, the temperature of a liquid may be

lowered several degrees below its melting-point without solidi-

fication, as will be seen below.

141. Change of Volume with Change of State.—Sub-

sttinces are generally more dense in the solid than in the liquid

state, but there are some notable exceptions. Water, on solidi-

fying, expands ; so that the density of ice at zero is only 0.9167,

while that of water at 4° is i. This expansion exerts consider-

able force, as is evidenced by the bursting of vessels and pipes

containing water.

142. Change of Melting- and Freezing-Points.—If water

be enclosed in a vessel sufficiently strong to prevent its expan-

sion, it cannot freeze except at a lower temperature. The
freezing-point of water is, therefore, lowered by pressure. On
the other hand, substances which contract on solidifying have

their solidification hastened by pressure.

The lowering of the melting-point of ice by pressure explains

some remarkable phenomena. If pieces of ice be pressed to-

gether, even in warm water, they will be firmly united. Frag-

ments of ice may be moulded, under heavy pressure, into a

solid, transparent mass. This soldering together of masses of

ice is called regelation. If a loop of wire be placed over a

block of ice and weighted, it will cut its way slowly through

the ice, and regelation will occur behind it. After the wire has

passed through, the block will be found one solid mass, as

before. The explanation of these phenomena is, that the ice

is partially melted by the pressure. The liquid thus formed is
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.colder than the ice ; it finds its way to points of less pressure,

^nd there, because of its low temperature, it congeals, firmly-

uniting the two masses.

Water, when freed from air and kept perfectly quiet, will

not form ice at the ordinary freezing-point. Its temperature

may be lowered to — 10° or — 12° without solidification. In

this condition a slight jar, or the introduction of a small frag-

ment of ice, will cause a sudden congelation of part of the

•liquid, accompanied by a rise in temperature in the whole mass

to zero.

A similar phenomenon is observed in the case of several

solutions, notably sodium sulphate and sodium acetate. If a

saturated hot solution of one of these salts be made, and al-

lowed to cool in a closed bottle in perfect quiet, it will not

crystallize. Upon opening the bottle and admitting air, crys-

tallization commences, and spreads rapidly through the mass,

accompanied by a considerable rise of temperature. If the

amount of salt dissolved in the water be not too great, the so-

lution will remain liquid when cooled in the open air, and it

may even suffer considerable disturbance by foreign bodies

without crystallization ; but crystallization begins immediately

upon contact with the smallest crystal of the same salt.

143. Heat Equivalent of Fusion.—Some facts that have
appeared in the above account of the phenomena of fusion and
solidification require further study. It has been seen that,

however rapidly the temperature of a solid may be rising, the

moment fusion begins the rise of temperature ceases. What-
ever the heat to which a solid may be exposed, it cannot be

made hotter than its melting-point. When ice is melted by
pressure, its temperature is lowered. When a liquid is cooled,

its fall of temperature ceases when solidification begins ; and
if, as may occur under favorable conditions, a liquid is cooled

below its melting-point, its temperature rises at once to the

melting-point, when solidification begins. Heat, therefore, dis-
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appears when a body melts, and is generated when a liquid be-

comes solid.

It was stated (§ loi) that ice can be melted by friction

;

that is, by the expenditure of mechanical energy. Fusion is,

therefore, work which requires the expenditure of some form

of energy to accomplish it. The heat required to melt unit

mass of a substance is the heat equivalent offusion of that sub-

stance. When a substance solidifies, it develops the same
amount of heat as was required to melt it.

144. Nature of the Energy stored in the Liquid.—From
the facts given above, as well as from the principle of the con-

servation of energy, it appears that the energy expended in

melting a body is stored in the liquid. It is easy to see what

must be the nature of this energy. When a body solidifies, its

molecules assume certain positions in obedience to their mu-
tual attractions. When it is melted, the molecules are forced

into new positions in opposition to the attractive forces. They
are, therefore, in positions of advantage with respect to these

forces, and possess potential energy.

145. Determination of the Heat Equivalent of Fusion.

—The heat equivalent of fusion may be determined by the

method of mixtures (§ ill), as follows : a mass of ice, for ex-

ample, represented by P, at a temperature t below its melting-

point, to insure dryness, is plunged into a mass P' of warm
water at the temperature T. Represent by 6 the resulting

temperature, when the ice is all melted. If p represent the

water equivalent of the calorimeter, (i"-!-/) (7"— ^) is the

heat given up by the calorimeter and its contents. Let c

represent the specific heat of ice, and x the heat equivalent of

fusion. The ice absorbs, to raise its temperature to zero, Ptc

calories ; to melt it, Px calories ; to warm the water after melt-

ing, Pd caloriies. We then have the equation

Ptc + Pe+ Px={F +p){T- 0),

from which x may be found.
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Other calorimetric methods may be employed. The best

experiments give, for the heat equivalent of fusion of ice, very

nearly eighty calories.

GASES AND VAPORS.

146. The Gaseous State.—A gas may be defined as a

highly compressible fluid. A given mass of gas has no definite

volume. Its volume varies with every change in the external

pressure to which it is exposed. A vapor is the gaseous state

of a substance which at ordinary temperatures exists as a solid

or a liquid.

147. Vaporization is the process of formation of vapor.

There are two phases of the process, evaporation, in which vapor

is formed at the free surface of the liquid, and ebullition, in

which the vapor is formed in bubbles in the mass of the liquid,

or at the heated surface with which it is in contact.

148. Nature of the Process of Evaporation.—It has

been seen (§ loi) that there are many reasons for believing that

the molecules of solids and liquids are in a state of continual

motion. It is not supposed that any one molecule maintains

continuously the same condition of motion ; but in the inter-

action of the molecules the motion of any one may be more or

less violent, as it receives motion from its neighbors, or gives

up motion to them. It can easily be supposed that, at the ex-

posed surface of the substance, the motion of a molecule may
at times be so violent as to project it beyond the reach of the

molecular attractions. If this occur in the air, or in a space

filled with any gas, the molecule may be turned back, and made
to rejoin the molecules in the liquid mass ; but many will find

their way to such a distance that they will not return. They
then constitute a vapor of the substance. As the number of

free molecules in the space above the liquid increases, it is plain

that there may come a time when as many will rejoin the liquid

as escape from it. The space is then saturated with the vapor.
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The more violent the motion in the liquid, that is the higher

its temperature, the more rapidly the molecules will escape, and

the greater must be the number in the space above the liquid

before the returning will equal in number the outgoing mole-

cules. In other words, the higher the temperature, the more

dense the vapor that saturates a given space. If the space

above a liquid be a vacuum, the escaping molecules will at first

meet with no obstruction, and, as a consequence, the space will

be very quickly saturated with the vapor.

Experiment verifies all these deductions. Evaporation goes

on continually from the free surfaces of many liquids, and even

of solids. It increases in rapidity as the temperature increases,

and ceases when the vapor has reached a certain density,

always the same for the same temperature, but greater for a

higher temperature. It goes on very rapidly in a vacuum ; but

it is found that the final density of the vapor is no greater, or

but little greater, than when some other gas is present. In

other words, while a foreign gas impedes the motion of the

outgoing molecules, and causes evaporation to go on slowly, it

has very little influence upon the number of molecules that

must be present in order that those which return may equal

in number those which escape.

149. Pressure of Vapors.—As a liquid evaporates in a

closed space, the vapor formed exerts a pressure upon the en-

closure and upon the surface of the liquid, which increases so

long as the quantity of vapor increases, and reaches a maxi-

mum when the space is saturated. This maximum pressure of

a vapor increases with the temperature. When evaporation

takes place in a space filled by another gas which has no action

upon the vapor, the pressure of the vapor is added to that of

the gas, and the pressure of the mixture is, therefore, the sum
of the pressures of its constituents. The law was announced

by Dalton that the quantity of vapor which saturates a given

space, and consequently the maximum pressure of that vapor,

is the same whether the space be empty or contain a gas.
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Regnault has shown that, for water, ether, and some other

substances, the maximum pressure of their vapors is slightly-

less when air is present.

150. Ebullition.—As the temperature of a liquid rises, the

pressure which its vapor may exert increases, until a point is

reached where the vapor is capable of forming, in the mass of

the liquid, bubbles which can withstand the superincumbent

pressure of the liquid and the atmosphere above it. These

bubbles of vapor, escaping from the liquid, give rise to the

phenomenon called ebullition, or boiling. Boiling may, there-

fore, be defined as the agitation of a liquid by its own vapor.

Generally speaking, for a given liquid, ebullition always oc-

curs at the same temperature for the same pressure ; and, when
once commenced, the temperature of the liquid no longer

rises, no matter how intense the source of heat. This fixed

temperature is called the boiling-point of the liquid. It differs

for different liquids, and for the same liquid under different

pressures. That the boiling-point must depend upon the pres-

sure is evident from the explanation of the phenomenon of

ebullition above given.

Substances in solution, if less volatile than the liquid, retard

ebullition. While pure water boils at 100°, water saturated

with common salt boils at 109°. The material of the contain-

ing vessel also influences the boiling point. In a glass vessel

the temperature of boiling water is higher than in one of metal.

If water be deprived of air by long boiling, and then cooled, its

temperature may afterwards be raised considerably above the

boiling-point before ebullition commences. Under these con-

ditions, the first bubbles of vapor will form with explosive vio-

lence. The air dissolved in water separates from it at a high

temperature in minute bubbles. Into these the water evapo-

rates, and, whenever the elastic force of the vapor is sufficient

to overcome the superincumbent pressure, it enlarges them,

and causes the commotion that marks the phenomenon of
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ebullition. If no such openings in the mass of the fluid exist,

the cohesion of the fluid, or its adhesion to the vessel, as well

as the pressure, must be overcome by the vapor. This explains

the higher temperature at which ebullition commences when
the liquid has been deprived of air.

151. Spheroidal State.—If a liquid be introduced into a

highly heated capsule, or poured upon a very hot plate, it does

not wet the heated surface, but forms a flattened spheroid,

which presents no appearance of boiling, and evaporates only

very slowly. Boutigny has carefully studied these phenomena,

and made" known the following facts. The temperature of the

spheroid is below the boiling-point of the liquid. The spheroid

does not touch the heated plate, but is separated from it by a

non-conducting layer of vapor. This accounts for the slowness

of the evaporation. To maintain the liquid in this condition

the temperature of the capsule must be much above the boil-

ing-point of the liquid ; for water it must be at least 200° C.

If the capsule be allowed to cool, the temperature will soon fall

below the limit necessary to maintain the spheroidal state, the

liquid will moisten the capsule, and there will be a rapid ebul-

lition, with disengagement of vapor. If a liquid of very low
boiling-point, as liquid nitrous oxide, which boils at — 88°, be
poured into a red-hot capsule, it will assume the spheroidal

state ; and, since its temperature cannot rise above its boiling-

point, water, or even mercury, plunged into it, will be frozen.

152. Production of Vapor in a Limited Space.—When a

liquid is heated in a limited space the vapor generated accumu-

lates, increasing the pressure, and the temperature rises above

the ordinary boiling-point. Cagniard-Latour experimented

upon liquids in spaces but little larger, than their own volumes.

He found that, at a certain temperature, the liquid suddenly

disappeared ; that is, it was converted into vapor in a space

but little larger than its own volume. It is supposed that

above the temperature at which this occurs, which is called the
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critical temperature, the substance cannot exist in the liquid

state.

153. Liquefaction.—Only a certain amount of vapor can

exist at a given temperature in a given space. If the tempera-

ture of a space saturated with vapor be lowered, some of the

vapor must conderise into the liquid state. It is not necessary

that the temperature of the whole space be lowered ; for, when
the vapor in the cooled portion is condensed, its pressure is

diminished, the vapor from the warmer portion flows in, to be

in its turn condensed, and this continues until the whole is

brought to the density and pressure due to the cooled portion.

Any diminution of the space occupied by a saturated vapor

at constant temperature, will cause some of the vapor to be-

come liquid, for, if it do not condense, its. pressure must in-

crease ; but a saturated vapor is already at its maximum pres-

sure.

If the vapor in a given space be not at its maximum pres-

sure, its pressure will increase when its volume is diminished;

until the maximum pressure is reached ; when, if the tempera-

ture remain constant, further reduction of volume causes

condensation into the liquid state, without further increase of

pressure or density. This statement is true of several of the

gases at ordinary temperatures. Chlorine, sulphur dioxide,

ammonia, nitrous oxide, carbon dioxide, and several other

gases, become liquid under sufficient pressure. Andrews
found that, at a temperature of 30.92°, pressure ceases to

liquefy carbon dioxide. This is the critical tem'perature for

that substance. The critical temperatures of oxygen, hydrogen,

and the other so-called permanent gases, are so low that it is

only by methods capable of yielding an extremely low tempera-

ture that they can be liquefied. By the use of such methods

any of the gases may be made to assume the liquid state. In

the case of hydrogen, however, the low temperature necessary

for its liquefaction has only been reached by allowing the gas
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to expand suddenly from a condition of great condensation, in

which it had aheady been cooled to a very low point.

154. Pressure and Density of Non-saturated Gases and
Vapors.—If a gas or vapor in the non-saturated condition be

maintained at constant temperature, it follows very nearly

Boyle's law (§§ 76 and 98). If its temperature be below its

critical temperature, the product of volume by pressure dimin-

ishes, and near the point of saturation the departure from the

law may be considerable. At this point there is a sudden

diminution of volume, and the gas assumes the liquid state.

The less the pressure and density of the gas, the more nearly

it obeys Boyle's law.

It has been started already (§ 99) that gases expand as the

temperature rises. The law of this expansion, called, after its

discoverer, Gay-Lussac s law, is that, for each increment of

temperature of one degree, every gas expands by the same

constant fraction of its volume at zero. This is equivalent to

saying that a gas has a constant coefficient of expansion,

which is the same for all gases.

Let Vo, Vi, represent the volumes at zero and ^ respectively,

.
and a the coefficient of expansion. Then, the pressure remain-

ing constant, we have

f,= f;(i + «4 (51)

If rf„, dfy represents the densities at the same two tempera-

tures, we have, since densities are inversely as volumes,

dt = -VS- (52)

Later investigations, especially those of Regnault, show that

this simple law, like the law of Boyle, is not rigorously true,

though it is very nearly so for all gases and vapors which are
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not too near their points of saturation. The common co-

efficient of expansion is « = 0.003666 = -^^ very nearly.

From the law of Boyle we have, for a given mass of gas, if

the temperature remain constant,

Vpp — Vp'p' = volume at pressure unity,

where Vp, V^i, represent the volumes at pressure p and /' re-

spectively.

From the law of Gay-Lussac we have, if the pressure remain

constant,

„ V^ V^_
° "~

I + a^ ~ I -f at'' ^53)

If the temperature and pressure both vary, we have

V^,p Vp.tp'

I -\- at I -\-~at' (54)

that IS, if the volume of a given mass of gas be multiplied by
the corresponding pressure and divided by the factor of ex-

pansion, the quotient is constant.

155. Pressure and Density of Saturated Gases and
Vapors.—It has been seen that, for each gas

, or vapor at a

temperature below the critical temperature, there is a maximum
pressure which it can exert at that temperature. To each

temperature there corresponds a maximum pressure, which- is

higher as the temperature is higher. . A gas or vapor in contact

with its Hquid in a closed space will exert its maximum pressure.

The relation between the temperature and the correspond-

ing maximum pressure of a vapor is a very important one, and
has been the subject of many investigations. The vapor of

water has been especially studied, the most extensive and
accurate experiments being those of Regnault.
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Two distinct methods were employed, one for temperatures

below 50°, and the other for higher temperatures. The first

consisted in observing the difference in height of two barom-

eters placed side by side, the vacuum chamber of one con-

taining a little water. The temperature was carried from zero

to about 50°. Both barometers were surrounded by the same

medium, and in every way under the same conditions, except

that water and its vapor were present in one and not in the

other. The difference between the heights of the two gave

the pressure of the .vapor at the temperature of the experiment.

The second method was founded on the principle that the

vapor of a boiling liquid exerts a pressure equal to that of the

atmosphere above it. The experiment consisted in boiling

water in a closed space in which tco

the air could be rarefied or con-

densed to a known pressure, and

noting the temperature of the

boiling liquid and that of the

vapor above it. To prevent the

accumulation of the vapor and

the consequent change of pres-

sure, a condenser communicated

with the boiler, consisting of a

tube surrounded by a larger

tube, forming an annular space,

through which a stream of cold

water was kept flowing. By this

means the vapor was condensed as fast as forrned, and the watef

from its condensation flowed back into the boiler. By rarefying

or compressing the air in the closed space, an artificial atmos-

phere of any desired pressure could be obtained, and maintained

constant as long as was necessary for making the observations.

The temperature was determined by means of four

thermometers placed in the boiler, two of them in the liquid

.0 10 ^0 30 10 50 m 70 80 90 XUU

Fig. 51.
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and two in the vapor. The bulbs of the thermometers were

placed in metal tubes, to protect them from the pressure, which

otherwise would compress the bulb, and cause the thermome-

ter to register too high a temperature.

The results of Regnault's observations may be repre-

sented graphically, as in Fig. 51, where pressures are measured

in the vertical, and temperatures in the horizontal, direction.

It is seen that the pressure varies very rapidly with the tem-

perature.

156. Kinetic Theory of Gases.—^According to the kinetic

theory ofgases, a perfect gas cqnsists of an assemblage of free,

perfectly elastic molecules in constant motion. Each mole-

cule moves in a straight line with a constant velocity, until it

encounters some other molecule, or the side of the vessel.

The impacts of the molecules upon the sides of the vessel ai-e

so numerous that their effect is that of a continuous constant

force or pressure.

The entire independence of the molecules is assumed from

the fact that, when gases or vapors are mixed, the pressure of

one is added to that of the others ; that is, the pressure of the

mixture is the sum of the pressures of the separate gases. It

follows from this, that no energy is required to separate the

molecules ; in other words, no internal work need be done to

expand a gas. This was demonstrated experimentally by

Joule, who showed that when a gas expands without perform-

ing external work, it is not cooled.

The action between two molecules, or between a molecule

and a solid wall, must be of such a nature that no energy is

lost; that is, the sum of the kinetic, energies of all the mole-

cules must remain constant. Whatever be the nature of this

action, it is evident that when a molecule strikes a solid

stationary wall, it must be reflected back with a velocity equal

to that before impact. If the velocity be resolved into two
components, one parallel to the wall and the other normal to
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it, the parallel component remains unchanged, while the nor-

mal component is changed from + ^, its value before impact,

to — V, its value after impact. The change of velocity is there-

fore 2v ; and if G represent the. duration of impact, the mean
. 2V , . . . . 2V

acceleration is —a, and the mean force of impact p = fn-n,

where m represents the mass of the molecule.

Since the effect of the impacts is a continuous pressure,

the total pressure P exerted upon unit area is equal to this

mean force of impact of one molecule multiplied by the num-
ber of molecules meeting unit area in the time 6. To find this

latter factor, we suppose the molecules confined between two

parallel walls at a distance s from each other. Any molecule

may be supposed to suffer reflection from one wall, pass across

to the other, be reflected back to the first, and so on. What-
ever may be the effect of the mutual collisions of the mole-

cules, the number of impacts upon the surface considered will

be the same as though each one preserved its rectilinear mo-
tion unchanged, except when reflected from the solid walls.

The time required for a molecule moving with a velocity v to

2s
pass across the space between the two walls and back is —

;

and the number of impacts upon the first surface in unit time

IS —

.

2S

Represent by n' the number of molecules in a rectangular

prism, with bases of unit area in the walls. These molecules

must be considered as moving in all directions and with various

velocities. But the velocity of any molecule may be resolved

in the direction of three rectangular axes, one normal to the

surface and the other two parallel to it ; and, since the number
of molecules in any finite volume of gas is practically infinite,

the effect upon the wall due to their real motions will be the

same as would result from a motion of one third the total
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number of molecules in each of the three directions with the

mean velocity. Hence the number of molecules moving, in a

manner similar to that of the single molecule already consid-

ered, normal to the walls is \n' . The number of impacts upon

I 1% 1)

unit area of the first surface in unit time is ; and in time 6
3 2.f

. I n'vQ TT , , r, . .

is . Hence the total pressure P on unit area is

„ 2v I n'v() I m'

3 2s 3 s

But — is the number of molecules in unit volume. Repre-

senting this by n, we have

P = inmv'. (5 5)

That is, the pressure upon unit area is equal to one third the
number of molecules in unit volume at that pressure multipHed
by twice the kinetic energy of each molecule.

Suppose, now, the volume of the gas be changed from unity
to V, without change of temperature. The number of mole-

cules in unit volume is now
-f^, and the pressure P, = - ~mv',

whence P^V= ^nmv\ This is a constant quantity, since n and
m are constant for the same mass of gas, and v is constant if

there be no change of temperature. But PV equal to a con-
stant is Boyle's law.

From the law of Gay-Lussac we have, if P represent the
pressure at t°, and P, the pressure at zero,

P = P,{i + at).
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We have a = -g^ very nearly ; hence

i>=i'.(i+^). (56)

lii=- 273°,

°\ 273/

that is, at 273° below zero the pressure vanishes. Since

P — \nmv'', it follows that, at this temperature, z/ = o, or the

molecules are at rest. This temperature is therefore called the

absolute zero.

In studying the expansion of gases, it is very convenient to

use a scale of temperatures the zero-point of which is at the

absolute zero. Temperatures reckoned upon this scale are

called absolute temperatures. Let T represent a temperature

upon the absolute scale: then T= t^ 273, and Eq. (56) be-

T
comes P= P^— . Substituting the value of P from (55), we

273

have

T

whence

T = \,?-^-mv\

'

(57)

That is, the absolute temperature of a gas is proportional to

the kinetic energy of the molecules.

It has been already stated (§ 100), that, when a gas is com-

pressed, a certain amount of heat is generated. Suppose a

cylinder with a tightly-fitting piston. So long as the piston is
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at rest, each molecule that strikes it is reflected with a velocity-

equal to that before impact : but if the piston be forced into

thq cylinder, each molecule, as it is reflected, has its velocity

increased ; and, as was shown above, this is equivalent to a rise

in temperature. It can be shown that the increase of kinetic

energy in this case is precisely equal to the work done in forc-

ing the piston into the cylinder against the pressure of the gas.

On the other hand, if the piston be pushed backward by the

force of the impact of the molecules, there will be a loss of

velocity by reflection from the moving surface, kinetic energy

equal in amount to the work done upon the piston disappears,

and the temperature falls.

The phenomena exhibited by the radiometer afford a strong

experimental confirmation of the kinetic theory of gases.

These phenomena were discovered by Crookes. In the form

first given to it by him, the instrument consists of a delicate

torsion balance suspended in a vessel from which the air is very

completely exhausted. On one end of the arm of the torsion

balance is fixed a light vane, one face of which is blackened.

When a beam of light falls on the vane, it moves as if a press-

ure were applied to its blackened surface. The explanation of

this movement is, that the molecules of air remaining in the

vessel are more heated when they come in contact with the

blackened face of the vane than when they come in contact

with the other face, and are hence thrown off with a greater

velocity, and react more strongly upon the blackened face of

the vane. At ordinary pressures the free paths of the mole-
cules are very small, their collisions very frequent, and any in-

equality in the pressures is so speedily reduced, that no . effect

upon the vane is apparent. At the high exhaustions at which
the movement of the vane becomes evident, the collisions are

less frequent, and hence an immediate equalization of pressure

does not occur. The vane therefore moves in consequence of

the greater reaction upon its blackened surface.
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157. Mean Velocity of Molecules.—Equation (55) enables

us to determine the mean velocity of the molecules of a gas of

which the density and pressure are known, since nm is the

mass of the gas in unit volume.

Solving the equation with reference to v, and substituting

the known values of the constants for hydrogen, namely,

/*= 1013373 dynes per square centimetre, and nm, or density,

= 0.00008954 grams per cubic centimetre, we have 184260 cen-

timetres per second, or a little more than one mile per second,

'

as the mean velocity of a molecule of hydrogen.

158. Elasticity of Gases.—It has'' been shown (§ Tj) that

the elasticity of a gas, obeying Boyle's law, is numerically equal

to the pressure. This is the elasticity for constant temperature.

But, as was seen (§ 156), when a gas is compressed it is

heated; and heating a gas increases its pressure. Under ordi-

nary conditions, therefore, the ratio of a small increase of pres-

sure to the corresponding decrease of unit volume is greater

than when ,the temperature is constant. It is important to

consider the case when all the. heat generated by the compres-

sion is retained by the gas. The elasticity is then a maximum,,

and is called the elasticity when no heat is allowed to enter or

escape.

Let mn (Fig. 52) be a curve representing the relation be-

tween volume and pressure for con-

stant temperature, of which the ab-

scissas represent volumes and the

ordinates pressures. Such a curve

is called an isothermal line. It is

plain that to each temperature must
correspond its own isothermal line.

If, now, we supposfe the gas to be

compressed, and no heat to escape,

it is plain that if the volume dimin- o g c

ish from OC to OG, the pressure will F'°' s^-

become greater than GD; suppose it to be GM. If a number
13
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of such points as J/ be found, and a line be drawn through

them, it will represent the relation between volume and pres-

sure when no heat enters or escapes. It is called an adiabatic
'

line. It evidently makes a greater angle with the horizontal

than the isothermal.

159. Specific Heats of Gases.—In § 156 it is seen that the

temperature of a gas is proportional to the kinetic energy of

its molecules. To warm a gas without change of volume is,

therefore, only to add to this kinetic energy. If, however, the

gas be allowed to expand when heated, the molecules lose

energy by impact upon the receding surface ; and this, together

with the kinetic energy due to the rise in teinperature, must be

supplied from the source of heat. It has been seen that the

loss of energy resulting fropi impact upon a receding surface is

equal to the work done by the gas in' expanding.

The amount of heat necessary to raise the temperature of

unit mass of a gas one degree, while the volume remains un-

changed, is called the specific heat of the gas at constant volume.

The amount of heat necessary to raise the temperature of unit

mass of a gas one degree when expansion takes place without

change of pressure, is called the specific heat of the gas at con-

stant pressure.

From what has been said above, it is evident that the differ-

ence between these two quantities of heat is the equivalent of

the work done by the expanding gas.

The determination of the relation of these two quantities is

a very important problem.

The specific heat of a gas at constant pressure may be found

by passing a current of warmed gas through a tube coiled in a

calorimeter. This is the method of mixtures (§ iii). There

are great difficulties in the way of an accurate determination,

'

because of the small density of the gas, and the time required

to pass enough of it through the calorimeter to obtain a reason-'

able rise of temperature. The various sources of error p'roduce
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.effects which are sometimes as great as, or even greater than,

the quantity to be measured. It is beyond the scope of this

work to describe in detail the means by Which the effects of

the disturbing causes Jiave been determined or ehminated.

The specific heat of a gas at constant volume is generaliy

determined from the ratio between it and the specific heat at

constant pressure. The first determination of this ratio was

accompHshed by Clement and Desormes.

The theory of the experiment, may be understood from the

following considerations

:

Let a unit mass of gas at any temperature t and volume

Vt be confined in a cylinder by a closely fitting piston of area

A. Suppose its temperature to be raised one degree, by com-

munication of heat from some external source, while its volume

remains unchanged. It absorbs heat, which . we will suppose

measured in mechanical units, and will represent by C-o the

specific heat at constant volume. Now let the gas expand, at

the constant temperature ^ + i, until it returns to its original

pressure. During this expansion the piston will be forced out

through a distance d, and an additional quantity of heat will

be absorbed from the source. Represent by P the mean
pressure on unit area of the piston exerted by the gas during

this operation. Then the work done during expansion, which

is. the equivalent of the heat absorbed, is PAd. .^ if represents

the increase in volume of the gas during this process. The
same increase in volume would have occurred had the gas beeii

allowed to expand at constant pressure, while its temperature

was rising. But, for a rise in temperature of one degree, the

increase in volume of any mass of gas is ffF"„, where V^ repre-

sents the volume at zero. Hence we have Ad == aV„ and the

work done during the expansion is PAd = PoiV„. The heat

absorbed, therefore, in raising the temperature of the gas one

degree at constant pressure is Q = d, + P^V„. Cp represents

the specific heat of the gas at constant pressure, measured in
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mechanical units. The ratio of the two specific heats is

^=i + ^/'«F,. (S8>

If, in the case considered above, the gas had expanded;

without receiving any heat, the work PaV^ would have been

done at the expense of its own internal energy, and the

temperature would have fallen. The performance of this work

is equivalent to abstracting the quantity of heat, PaV^, whicL

would lower the temperature -^ . Pa F„ degrees, since the ab-

straction of a quantity d, of heat would lower the temperature

one degree. Represent this change of temperature by 6. Re-

,

membering that the supposed change of volume was a V„ which
aVt

equals -——-, and that the original volume was Vt, it is seea

a
that the change of —;—: in unit volume would cause a fall in°

1 -\- at

terriperature of ^degrees. Substituting d iovj^PaV^ in Eq..

r
(58), we have ji =. i -\- B. It is the object of the experiment

to find 0. The method of Clement and Desormes is as follows:.

A large flask is furnished with a stopcock having a large

opening, and a very sensitive manometer which shows the

difference between the pressure in the flask and the pressure

of the air. The air in the flask is first rarefied, and left to

assume the temperature of the surrounding atmosphere. Sup-

pose its pressure now to be /f— h, H representing the height

of the barometer, and h the difference between the pressure in

the flask and the pressure of the atmosphere, as shown by the

manometer. The large stopcock is then suddenly opened for

a very short time only; the air rushes in, re-establishes the



159] -EFFECTS OF HEA T. 197

atmospheric pressure, compresses the air originally in the flask,

and raises its temperature. The volume of the air becomes

\ — (p, where its original volujne is taken as unity and repre-

sents its reduction ; and, if there were no change of tempera-

ture, the pressure wpuld be :~~d>-
^^ *^^ temperature in

'crease Q' d.egrees, and become /+ 6*', the pressure will be

H-_h l±o^_n = H, (59)

the atmospheric pressure.

The flask is now left until the air within it returns to the

temperature of the atmosphere t, when the manometer shows

a fall of pressure h! , and we have

^LuA^H-h'. {66)
I —

From these two equations we have

^-^-^ ft'- (^ + ^^)^'

a
Suppose, now, the change of volume had been

^
.

^^,

then the change of temperature woyld have been 6
; and, since

change of volume is proportional to change of temperature, we

have

^ i-\-at

hence

6'^^
l + at
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or, substituting the values of and B', we have

h' H-h! h!

H-k! '^ h-h'- h-h!'

Now we have shown that

Cp

a = 1+^;

hence

160. The Two Specific Heats of a Gas have the Same
Ratio as the Two Elasticities.—Suppose a gas, of which

the mass is unity and volume V, to rise in temperature at

constant pressure from the temperature t to the. temperature

{t -\- /it), M representing a very small increment of tempera-

ture. The heat consumed will be CpAt, and the increase of

volume aV^M. Now, if the volume had remained constant,

the amount of heat required to cause the rise of temperature

At would have been C At. Hence if the gas be not allowed to

expand, the amount of heat, CpAt, will cause a rise of tempera-

C
ture -JAt ; and the same rise of temperature will occur if the

gas, after first being allowed to eXpand, be compressed to its

initial volume. Such a. compression would be attended by an

increase of pressure, which we will call Ap. The ratio between
this and the corresponding change of volume is

cfvAt = ^^' (^^)
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where Eh is the elasticity under the condition that no heat

enters or escapes.

If; now, the heat produced by compression be allowed to

escape, there will remain the quantity Cv^t, and the increment

of pressure will be reduced to Sp =. ^p-^ . This is the increase

of pressure that will occur if the gas be compressed by the

amount a. V^^t without change of temperature ; hence

WAt = ^-' <'3)

where Et is the elasticity for constant temperature. Dividing

(62) by (63), we have

• Ap
Ek_ aV,At Ap _Ap_ Cp

Et~ Sp ~ Sp- C-~ Cr,'

that is, the two elasticities have the same ratio as the two
specific heats of a gas. ,

. It may be shown that the velocity of sound in any medium
is equal to the square root of the quotient of the elasticity

divided by the density of the medium ; that is,

velocity = \/— (64)

. In the progress of a sound-wave, the air is alternately com-



200 I ELEMENTAR Y PlfYSICS. [l6i

pressed and rarefied, the compressions and rarefactions occur-

ring in such rapid succession that there is no time for any

tra:nsfer of heat. If Eq. (64) be applied to air, the E becomes

E;„ or the elasticity under the condition that no heat enters or

escapes. Since we know the density of the air and the velocity

of sound, Ek can be computed. In § yj it is shown that Et is

numerically equal to the pressure ; hence we have th;e values

of the two elasticities of air, and, as seen above, their ratio is

the ratio of the two specific heats of air.

161. Examples of Energy absorbed by Vaporization.—
When a liquid boils, its temperature remains constant, however

intense the source of heat. This shows that the heat applied,

to it is expended in producing the change of state. Heat is

absorbed during evaporation. By promoting evaporation, in-

tense cold may be produced. In a vacuum, water may be

frozen by its own evaporation. If a liquid be heated 'to a

temperature above its ordinary boiling-point under pressure,,

relief of the pressure is followed by a very rapid evolution of

vapor and a rapid cooling of the liquid. Liquid nitrous oxide

at a temperature of zero is still far above its boiling-point, and'

its vapor exerts a pressure of about thirty atmospheres. If the

liquid be drawn off into an open vessel, it at first boils with

extreme violence, but is soon cooled to its boiling-point for the

atmospheric pressure, about — 88°, and then boils away slowly,

while its temperature remains a't that low point.

162. Heat Equivalent of Vaporization.—It is plain, from

what has preceded (§ 148), that the formation of vapor is work
requiring the expenditure of energy for its accomplishment.

Each molecule that is shot off into space obtains the motion
which, projected it beyond the reach of the molecular attract

tion, at the expense of the energy of the molecules that remain
behind. A quantity of heat disappears when a liquid evapo-

rates
; and experiment demonstrates, that to evaporate a kilo-

gram of a liquid at a given temperature always requires the
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same amount of heat. This is the heat equivalent of vaporiza-

tion. When a vapor condenses into the liquid state, the same

amount of heat is generated as disappears when the liquid

assumes the state of vapor. The heat equivalent of vaporiza-

tion is determined by passing the vapor at a known tempera-

ture into a calorimeter, there condensing it into the liquid

state, and noting the rise of temperature in the calorimeter.

This, it will be seen, is essentially the method of mixtures.

,

Many experimenters have given attention to this determina-

tion; but here, again, the best experiments are those of Reg-

nault. He determined what he called the total heat of steam

at various pressures. By this was meant the heat required to

raise the temperature of a kilogram of water from zero to the

temperature of saturated vapor at the pressure chosen, and
then convert it wholly into steam. The result of his experi-

ments give, for the heat equivalent of vaporization of water at

ioo°, 537 calories. That is, he found, that by condensing a

kilogram of steam at ioo° into water, and then cooling the

water to zero, 637 calories were obtained. But almost exactly

100 calories are derived from the water cooling from 100° to

zero ; hence 537 calories is the heat equivalent of vaporization

at 100°.

163. Dissociation.—It has already been noted (§ 99), that,

at high temperatures, compounds are separated into their ele-

ments. To effect this separation, the powerful forces of chem-

ical affinity must be overcome, dnd a considerable amount of

energy must be consumed.

164. Heat Equivalent of Dissociation and Chemical
Union.—From the principle of the conservation of energy, it

may be assumed that the energy required for dissociation is

the same as that developed by the reunion of the elements.

The heat equivalent of chemical union is not easy to deter-

mine because the process is usually complicated by changes

of physical state. We may cause the union of carbon and
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oxygen in a calorimeter, and, bringing, the products of com-

bustion to the temperature of the elements before the union,

measure the heat given to the instrument ; but the carbon has

changed its state from a solid to a gas, and some of the chem-

ical energy must have been consumed in that process. The
heat measured is the available heat. The best determinations

of the available heat of chemical union have been made by
Andrews, Favre and Silbermann,, and Berthelot.

HYGROMETRY.

165. Object of Hygrometry.—Hygrometry has for its ob-

ject the determination of the state of the air with regard to

moisture.

The amount of vapor in a given volume of air may be de-

termined directly by passing a known volume of air through

tubes containing some substance which will absorb the mois-

ture, and finding the increase in weight of the tubes and their

contents. The quantity of vapor contained in a cubic metre

of air is called its absolute humidity. Methods of determining

this quantity indirectly are given below.

166. Pressure of the Vapor.—It has been seen (§ 149),,

that, when two or more gases occupy the same space, each,

exerts its own pressure independently of the others., The pres-

sure of the. atmosphere is, therefore, the pressure of the dry air,,

with that of the vapor of water added. If we 'can determine

this latter pressure it is easy to compute the quantity of mois-

ture in the air. ,

It has also been seen that the pressure exerted by the

vapor in the air is at a certain temperature its maximum pres-

sure. Now, if any small portion of the space be cooled till its.

temperature is below that at which the pressure exerted is the

maximum pressure, a portion of the vapor will condense into

liquid. If, then, we determine the temperatui-e at which con-

densation begins, the maximum pressure of the vapor for this.
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temperature, which may be found from tables, is the real pres-

sure of the vapor in the air. The mass of vapor in a cubic

metre of air may then be computed as follows : A cubic metre
of dry air has a mass of 1293.2 grams at zero and at 700 milli-

metres pressure. At the pressure / of the vapor, and tem-
perature t of the air at the time of th6 experiment, the same
space would contain

1293.2X^X:^,
grams of air ; and, since the density of vapor of water referred

to air is 0.623, a cubic metre would contain

1293.2 X^Xj^,X 0.623 (65)

grams of vapor.

167. Dew Point.—The temperature at which the vapor of

the air begins to condense is called the dew point. It is deter-

mined by means of instruments called dew-point hygrometers,

which are instruments so constructed - that a small surface

exposed to the air may be cooled until moisture deposits

upon it, when its temperature is accurately determined. The
AUuard hygrometer consists of a metal box about one and a

half centimetres square and four centimetres deep. Two tubes

pass through the top of the box—one terminating just inside

and the other extending to the bottom. One side of the box
is gilded and polished, and is so placed that the gilded surface

lies on the same plane with, and in close proximity to, a gilded

metal plate. The box is partly filled with ether, and the short

tube is connected with an aspirator. Air is thus drawn through

the longer tube, arid, bubbling up through the ether,' causes

rapid evaporation, which soon cools the box, and causeS: a

deposit of dew upon the gilded surface. The presence of the

gilded plate helps very much in recognizing the beginning of

the deposit of dew, by the contrast between it and the dew-
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covered surface of the box. A thermometer plunged in the

€ther gives its temperature, and another outside gives the tem-

perature of the air. The temperature of the ether is the dew

point. From it the pressure of the vapor in the air is deter-

mined as described in the last section, and this pressure sub-

stituted for/ in Eq. 66 gives the absolute humidity.

168. Relative Humidity.—The amount of moisture that

the air may contain depends upon its tem,perature. The damp-

mess or dryness of the air does not depend upon the absolute

amount of moisture it contains, but upon the ratio of this to

the amount it might contain if saturated. The relative humid-

ity is the ratio of the amount of moisture in the air to that

which would be required to saturate it at the existing temper-

ature. Since non-saturated vapors follow Boyle's law very

closely, this ratio will be very nearly the ratio of the actual

pressure to the possible pressure for the temperature. Both

these pressures may be taken from the tables. One corre-

sponds to the' dew point, and the other to the temperature of

the air.



CHAPTER IV.

THERMODYNAMICS.

169. First Law of Thermodynamics.—The first law of

thermodynamics may be thus stated : When heat is trans-

formed into' work, or work into heat, the quantity of work is.

equivalent to the quantity of heat. The experiments of Joule

and Rowland establishing this law, and determining the me-

chanical equivalent, have already been described (§ 1 14).

170. Second Law of Thermodynamics.—When heat is

converted into work by any heat-engine under the conditions

that exist on the earth's surface, only a comparatively small

proportion of the heat drawn from the source can be so trans-

formed. The remainder is given up to a refrigerator, which in

some form must be an adjunct of every heat-engine, and still

exists as heat. It will be shown that the heat which is con-

verted into work bears to that which must be drawn from the

source of heat a certain simple ratio depending upon the tem-

peratures of the source and refrigerator. The second law of

thermodynamics asserts this relation. The ratio between the

heat converted into work and that drawn from the source is

called the efficiency of the engine.

To convert heat into mechanical work, it is necessary that

the heat should act through some substance called the working

substance ; as for instance, steam in the steam-engine or air in

the hot-air engine. In studying the transformation of heat

into work, it is an essential condition that the working sub-

stance must, after passing through a cycle of operations, return

to the same condition as at the beginning ; for if the substance

be not in the same c6ndition at the end as at the beginning,

internal work may have been done, or internal energy expend-
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ed, which would increase or diminish the work apparently de-

veloped from the heat.

To develop the second law of thermodynamics, we makd
use of a conception due to Carnot, of an engine completely re-

versible in all its mechanical and physical operations. In the

discussion of the reversible engine we employ a priiaciple,. first

enunciated by Clausius. Clausius' principle is, that heat cannot
,

pass of itself from a cold to a hot body. In many cases this

principle agrees with common experience, and in other cases

results in accordance with it have been obtained by experiment.

It is so fundanjental that it is often called the second law of

thermodynamics.

Suppose a heat-engine in operation, running forward. It

will receive from a source a certain quantity of heat H, transfer •

to a refrigerator a certain quantity of heat^, and perform a cer-

tain amount Woi mechanical work. If it be perfectly reversible, Jl^

it will, by the performance upon it of the amount of work W^
take from the refrigerator the quantity of heat A,, and restore to

the source the amount ff. Such an engine will convert into '

'-

work, under given conditions, as large as possible a proportion of

the heat taken from the source. For, let there be two engines,

A and B, of which £ is reversible, working between the same

source and refrigerator. If possible let A perform more work

than B, while taking from the source the same amount of heat^

If Whe the work it performs, and iv the work B performs, \5

will, from its reversibility, by the performance upon it of the

Vfork w, less than W, restore to the source the amount of heat,
'

H, which it takes away when running forward. Let A be em-

ployed to run B backward: A will take from the source a

quantity of heat, H, and perform work, W. B will restore

the heat ^to the source by the performance upon it of work,

w. The system will then continue running, developing the

work W— w, while the source loses no heat. It must be,

then, that A gives up to the refrigerator less heat than B takes
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away ; and the refrigerator must be growing colder. For the

purposes of this discussion, we may assume that all surround-

ing bodies, except the refrigerator, are at the same tempera-

ture as the source; hence the work JF—w, performed by the

system of two engines, must be performed by means of heat

taken from a body colder than all surrounding bodies. Now
this is contrary to the principle of Clausius. The hypothesis

with which we started must, therefore, be ifalse ; and we must

admit that no engine, no contrivance for converting heat

into work, can under similar conditions, and while taking the

same heat from the source, perfprm more work than ,a rever-

sible engine. It follows that all reversible engines, whatever

the working substance, have the same efificiency. This is a

most important conclusion. In view of it, we may, in study-

ing the conversion of heat into work, choose for the working

substance the one which presents the greatest advantage fpr

the study. Since of all substances the properties of gases are

laest kriown^, we will assume a perfect gas as the working sub-

stance. The cycle of four operations which we will study is

perfectly reversible. It is known as Carnofs Cycle.

Suppose the gas to be enclosed in a cylinder having a

tightly-fitting piston. Suppose the cycle to begin by a depres-

sion of the piston, compressing the gas, without loss or gain

of heat, until the temperature rises from ^ to ^ ; where t repre-

sents the temperature .of the source, and 8 that of the refriger-

ator. In Fig. 53, let Oa represent the

volume, and Aa the pressure at the be-

ginning. If the gas be compressed un-

til its volume becomes Ob, its pressure

will be bB. AB representing the pres-

sures and corresponding volumes dur-

ing the operation, is an adiabatic line, q -b an c

This is the first operation. For the
,

Fig. 53.

second operation, let the piston rise, and the volume increase
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from b to c at the constant temperature of the source. The
pressure will fall from bB to cC. BC is the isothermal line for

the temperature t. During this operation, a quantity of heat

represented by H must be taken from the source, to maintain

the constant temperature /. For the third operation let the

piston still ascend, and the volume increase from Oc to C^ with-

out loss or gain of heat until the temperature falls from t to 0,

the temperature at which the cycle" began. CD is an adiabatic;

line. For the fourth operation, let the piston be depressed to

the starting point, and the • gas maintained at the constant

temperature Q of the refrigerator. The volume becomes Oa
and the pressure aA, as at the beginning. DA is the isother-

mal line for the temperature 0.

Now let us consider the work done in each operation. While
the piston is being depressed through the volume represented

by ab, work must be performed upon it equal to ab X the

mean pressure exerted upon the piston. This mean pressure

lies between Aa, and, Bb, and the product of this by<2:^ is evi-

dently the arfea ABba. In the same way it is shown that

when the gas expands from ^ to c it performs work represented

by the area BCcb ; and again, in the third operation, it performs,

work represented by CDdc. In the fourth operation, when the

gas is compressed, work must be done upon it represented by
the area ADda. During the cycle, therefore, work is done by
the gas represented by the area BCDdb, and work is done upon

the gas represented by the area BADdb. The difference rep-

resented by the area ABCD is the work done by the engine

during the cycle. Since the gas is in all respects in the same
condition at the end as at the beginning of the cycle, no work

can have been developed from it ; and the work which the en-

gine has done m^ist have been derived from the heat communi-

cated to the gas during the second operation.

Now it has been shown that when a gas expands no inter-

nal work is done in separating the molecules, and when it ex-
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pands at constant temperature no change occurs in the in-

ternal kinetic energy;, the heat which is imparted to the gas

during the second operation is, therefore, the equivalent to the

work done by the gas upon the piston, and maybe represented

by the area BCcb. It will be seen, also, that the heat given up

to the refrigerator during the fourth operation is represented

by the area ADda, and that heat, the equivalent of the work
performed by the engine, represented by the area ABCD, has

disappeared. Of the "heat withdrawn from the source, then,

, , , . area ABCD . , . , ^, .

only the fraction i^T^r-r- is converted into work. This' area BLco
fraction is the efificiency of the engine.'

Now let the operation of the cycle be reversed. Starting

with the volume Oa the gas expands at the temperature B, ab-

sorbs a quantity of heat represented by h, the same as it gave

up when compressed, and performs work represented hy ADda;
next, it is compressed, without loss of heat, until its tempera-

ture rises to t, and work represented by DCcd is done upon
it ; next, it is still further compressed at the temperature t,

until its volume becomes Ob, and its pressure Bb. During this

operation it gives up the heat H which it absorbed during the

direct action, and work represented by CBbc is done xipon it.

Lastly, it expands to the starting-point, and falls to its initial

temperature. It will be seen that each operation is the reverse

in all respects of the corresponding operation of the direct

action, and that during the cycle work represented by the area

ABCD must be performed^ upon the engine whil^ the quantity

of heat k is taken from the refrigerator, and the quantity of

heat H is transferred to the source. Such an engine is therefore

a reversible engine ; and it converts into work as large a pro-

portion of the heat derived from the source as is possible under

the circumstances. An inspection of the figure shows that,

since the line BC remains the same so long as the amount of

heat H and the temperature t of the source remain constant,

14
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the only way to increase the proportion of work derived from

a given amount of heat H is to increase the difference of

temperature between the source and the refrigerator ; that is,

to increase the area ABCD, the line AD must be taken lower

down. The proportion of heat which can be converted into

work depends, therefore, upon the difference of temperature

between source and refrigerator. To determine the nature of

this dependence, suppose the range of temperature so small

that the sides of the figure ABCD maybe considered straight

and parallel. Produce AD to e, and draw gh representing the

mean pressure for the second operation. Now ABCD = eBCf
=^ Be X be ^ gi X be. «\lso BCcb = ^^ X be. Then we have

H — h _ area ABCD _ gi y^be _ gi

H ~ area BCcb ~ ghx be~ gh'

But gh is the pressure corresponding to volume Oh and tem-

perature t, hi is the pressure corresponding to the same volume

and temperature G. These pressures are proportional to the

absolute temperatures (§ 1 56) ; that is, if t and 9 are tempera-

tures on the absolute scale,

gh ~ t'

and

gi H-h t-9 mgh~ H ~ t '

hence
area ABCD t — d

In another form the result contained in Eq. i^G) may be

written ,

h 6
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This proportion has been derived Upon the supposition that

the range of temperature was very small : but it is equally true

for any range,; for, let there be a series of engines of small

range, of which the second has for a source the refrigerator of

the first, the third has for a source the refrigerator of the

second, and so on. The first takes from the source the heat

H, and gives to the refrigerator the heat h, working between

the temperatures t and B. The second takes the heat h from

the refrigerator of the first, and gives to its own refrigerator

the heat ^,, working between the temperatures Q and ^,. The
operation of the others is similar ; then, from Eq. 68, we have

H~
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verted into work is to the heat received as the difference of

temperature between the source and the refrigerator is to the

absolute temperature of the source. This ratio can become

unity only when d — 0°, or when the refrigerator is at the abr

solute zero of temperature. Since the difference of tempera-

tures , between which it is practicable to work is always small

compared to the absolute temperature of the source, a perfect

heat-engine can convert into work only a small fraction of the

heat it receives.

The formulas developed in this section embody what we
have called the second law of thermodynainics.

, 171. Absolute Scale of Temperatures.—K-n. absolute scale

of temperatures, formed upon the assumed properties of a

perfect gas, has already been described (§ 156). No such sub-

FiG. 54.

stance as a perfect gas exists; but, since (§ 170) any two
temperatures on the absolute scale are to each other as the

heat taken from the source is to the heat transferred to; the

refrigerator by a reversible engine, any substance of which we
know the properties With sufficient exactness to draw its iso-

thermal and adiabatic lines, may be used as a thermometric
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substance, and, by means of it, an absolute scale of tempera-

tures may be constructed. For example, in Fig. 54 let BB' be

an isothermal line for some substance, corresponding to the

temperature t of boiling water at a standard pressure. Let y5/?'

be the isothermal line for the temperature t^ of melting ice,

and let bb' be an isothermal line for an intermediate tempera-

ture. Let Bfi, B'I3', be adiabatic lines, such that, if the sub-

stance expand at constant temperature t from the condition

-B to the condition B', the equivalent in heat of one mechani-

cal unit of energy will be absorbed. Now, the figure BB'fi'j3

Represents Carnot's cycle; and the heat given to the refrigerator

at the temperatiire /„, measured in mechanical units, is less

than the heat taken from the source at the temperature t, by
the energy represented by the area BB'^'/i ; or, the heat given

to the refrigerator is equal to i — area B^': hence

J
~

i
'

and

t— t, area Bft'

Now , if ^ — <?, = 100°, as in the Centigrade scale, we have

100 _ area Bft'

and

»
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If 6 be the temperature corresponding to the isothermal

line bb' , we have, as above,

^ _ I — area BV
t~ \

'

whence

lOO
e = t{x- area BV) = ^p^-0}i^ ~ area Sb'). (70)

If, now, it be proposed to use the substance as a thermometric

substance by noting its expansion at constant pressure, take

Om' to represent that pressure, and draw the horizontal line

mnop ; mn is the volume of the substance at temperature ^„,

mo the volume at temperature 0, and m/> the volume at tem-

perature i.

This method of constructing an absolute scale of tempera-

ture was proposed by Thomson.

172. The Steam-Engine.—The steam-engine in its usual

form consists essentially of a piston, moving in a closed cylin-

der, which is provided with passages and valves by which steam

can be admitted and allowed to escape. A boiler heated by a

suitable furnace supplies the steam. The valves of the cylin-

der are opened and closed automatically, admitting and dis-

charging the steam at the proper times to impart to the piston

a reciprocating motion, which may be converted into a circulaf

motion by means of suitable mechanism.

There are two classes of steam-engines, condensing and.

non-condensing. In condensing engines the steam, after doing

its work in the cylinder, escapes into a condenser, kept cold by

a circulation of cold water. Here the steam is condensed into-

water ; and this water, with air or other contents of the con-

denser; is removed by an "air-pdmp." In non-condensing

engines the stpam escapes into the open air. In this case the.
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temperature of the refrigerator must be considered at least as

high as that of saturated steam at the atmospheric pressure, or

about 100°, and the temperature of the source must be taken

as that of saturated steam at the boiler pressure. Applying

the expression for the efificiency (§ 1 70),

e = —--,

it will be seen, that, for any boiler pressure which It is safe to

employ in practice, it is not possible, even with a perfect en-

'gine, to convert into work more than about fifteen per cent of

the heat used.

In the condensing engine the temperature of the refrigera-

tor may be taken as that of saturated steam at the pressure

which exists in the condenser, which is usually about 30° or

40° : hence ^ — ^ is a much larger quantity for condensing than

for non-condensing engines. The gain of efificiency is not,

however, so great as would appear from the formula, because

of the energy that must be expended to maintain the vacuum
in the condenser.

173. Hot-air and Gas Engines.—Hot-air engines consist

essentially of two cylinders of different capacities, with some
arrangement for heating air in, or on its way to, the larger

cylinder. In one form of the engine, an air-tight furnace forms

the passage between the two cylinders, of which the smaller

may be considered as a- supply-pump for taking air from out-

side, and forcing it through the furnace into the larger cylinder,

where, in consequence of its expansion by the heat, it is enabled

to perform work. On the return stroke, this air is expelled

into the external air, still hot, but at a lower temjSerature than

it would have been had it not expanded and performed work.

This case is exactly analogous to that of the steam-engine, in'

which water is forced by a piston working in a small cylinder,.
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into a boiler, is there converted into steam, and then, acting

upon a much larger piston, performs work, and is rejected. In

another form of the engine, known as the "ready motor," the

air is forced into the large cylinder through a passage kept sup-

plied with crude petroleum. The air becomes saturated with

the vapor, forming a combustible mixture, which is burned in

the cylinder itself.

The Stirling hot-air engine and the Rider " compression

engine" are interesting as realizing an approach to Carnot's

cycle.

These engines, like those described above, consist of two

cylinders of different capacities, in which work air-tight pistons;

but, unlike those, there are no valves communicating with the

external atmosphere. Air is not taken in and rejected; but

the same mass of air is alternately heated and cooled, alter-

nately expands and contracts, moving the piston, and per-

forming work at the expense of a portion of the heat imparted

to it.
'

,
.

It is of interest to study a little more in detail the cycle of

operations in these two forms of engines. The larger of the

two cylinders is kept constantly at a high temperature by

means of a furnace;, while the smaller is kept cold by the circu-

lation of water. The cylinders communicate freely with each

other. The pistons are connected to cranks set on an axis, so

as to make an angle of nearly ninety degrees with each other.

Thus both pistons are moving for a short time iii the same

direction twice during the revolution of the axis. At the in-

stant that the small piston reaches the top of its stroke, the

large piston will be near the bottom of the cylinder, and de-

scending. The small piston now descends, as well as the

large one, the air in both cylinders is compressed, and there is

but little transfer from one to the other. There is, therefore,

comparatively little heat given up. The large piston, reaching

its lowest point, begins to ascend, while the descent of the
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smaller continues. The air is rapidly transferred to the larger

heated cylinder, and expands while taking heat from the highly

heated surface. After the small'piston has reached its lowest

point, there is a short time during which both the pistons are

rising and the air expanding,, with but little transfer from one

cylinder to the other, and with a relatively small -absorption of

heat. When the descent of the large piston begins, the small

one still rising, the aif is rapidly transferred to the smaller

cylinder : its volume is diminished, and its heat is given up to

the cold surface with which it is brought in contact. The
completion of this operation brings the air back to the condi-

tion from which it started. It will be seen that there are here

four operations, which, while not presenting the simplicity of

the four operations of Carnot,—since the first and third are

not performed without transfer of heat, and the second and
fourth not without change of temperature,—still fjirnish an

-example of work done by heat through a series of changes in

the working substance, which brings it back, at the end of each

.revolution, to the same condition as at the beginning.

Gas-engines derive their power from the force developed by
the combustion, within the cylinder, of a mixture of illuminat-

ing gas and air.

As compared with steam-engines, hot-air and gas engines

use the working substance at a much higher temperature.

.t — 6 is, therefore, greater, and the theoretical efficiency higher.

There are, however, practical difficulties connected with the

lubrication of the sliding surfaces at such high temperatures

that have so far prevented the use of large engines of this

Glass.

174. Sources of Terrestrial Energy.—Water flowing from

a higher to a lower level furnishes energy for driving machin-

ery. The energy theoretically available in a given time is the

weight of the water that flows during that time multiplied by
the height of the fall. If this energy be not utilized, it devel-
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ops heat by friction of the water or of the material that may
be transpbrted by it. But water-power is only possible so long

as the supply of water continues. The supply of water is de-

pendent upon the rains ; the rains depend upon evaporation
;,

and evaporation is maintained by solar heat, The energy of

water-power is, therefore, transformed solar. energy.

A moving mass of air possesses energy equal to the mass-,

multiplied by half the square of the velocity. This energy is,

available for propelling ships, for turning windmills, and for

other work. Winds are due to a disturbance of atmospheric

equilibrium by solar heat ; and the energy of wind-power^

like that of waterypower, is, therefore, derived from solar

energy.

The ocean currents also possess energy due to their motion,,,

and this motion is, like that of the winds, derived from solar

energy.

By far the larger part of the energy employed by man for

his purposes is derived from the combustion of wood and coal.

This energy exists as the potentlsl energy of chemical separation:

of oxygen from carbon and hydrogen. Now, we know that

vegetable matter is formed by the action of the solar rays.

through the mechanism of the leaf, and that coal is the carbon,

of plants that grew and decayed in a past geological age. The
energy of wood and coal is, therefore, the transformed energy

of solar radiations.

It is well known that, in the animal tissues, a chemical

action takes place similar to that involved in combustion. The-

oxygen taken into the lungs and absorbed by the blood com-

bines by processes with which we are not here concerned with

the constituents of the food. Among the products of this

combination are carbon dioxide and water, as in the combus-
tion of the same substances elsewhere. Lavoisier assumed that

such chemical combinations were the source of animal heaty.

and was the first to attempt a measur.ement of it. He com-
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pared the heat developed with that due to the formation of

, the carbonic dioxide exhaled in a given time. Despretz and

Dulong made similar experiments with more perfect apparatus,

and found that the heat produced by the animal was about

one tenth greater than would have been produced by the

formation by combustion of the carbonic acid and water ex-

haled.
^

•

These and similar experiments, although not taking into

account all the chemical actions taking place in the body, leave

no doubt that animal heat is due to atomic and molecular

changes within the body.

The work performed by muscular action is also the trans-

formed energy of food. Rumford, in 1798, saw this clearly;

and he showed, in a paper of that date, that the amount of

work done by a horse is much greater than would be obtained

by using its food as fuel for a steam-engine.

Mayer, in 1845, held that an animal is a heat-engine, that

every motion of the animal is a transformation intp work of the

heat developed in the tissues.

Hirn, in 1858, executed a series of interesting experiments

bearing upon this subject. In a closed box was placed a sort

of treadmill, which a man could cause to revolve by stepping

from step to step. He thus performed work which could be

measured by suitable apparatus outside the box. The tread-

wheel could also be made to revolve backward by a motor

placed outside; when the man descended from step to step, and

work was performed upon him.

Three distinct experiments were performed ; and the amount

of oxygen consumed by respiration, and the heat developed,

were determined.

In the first experiment the man remained in repose ; in the

second he performed work by causing the wheel to revolve ; in

the third the wheel was made to revolve backward, and work

was performed upon him. In the second experiment, the
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amount of heat developed for a gram of oxygen consumed was

much less, and in the third case much greater, than in the first

;

that is, in the first case, the heat developed was due to a chemi-

cal action, indicated by the absorption of oxygen ; in the second,

a portion of the chemical action went to perform the work, and

hence a less amount of heat was developed ; while in the third

case the motor, causing the treadVheel to revolve, performed

work, which produced heat in addition to that dtie to the

•chemical action.

It has been thought that muscular energy is due to the

waste of the muscles themselves :' but experiments show that

the waste of nitrogenized material is far too small in amount
to account for the energy developed by the animal ; and we
must, therefore, conclude that the principal source of muscular

energy is the oxidation of the non-nitrogenized material of the

blood by the oxygen absorbed in respiration.

An animal is, then, a machine for converting the potential

energy of food into mechanical work : but he is not, as Mayer
supposed, a heat-engine ; for he performs far more work than

could be performed by a perfect heat-engine, working between

the same limits of temperature, and using the food as fuel. .

The food of animals is of vegetable origin, and owes its

energy to the solar rays. Animal heat and energy is, therefore,

the transformed energy of the sun.

The tides are mainly caused by the attraction of the moon
upon the waters of the earth. If the earth did not revolve

upon its axis, or, rather, if it always presented one face to the

moon, the elevated waters woul'd remain stationary upon its

surface, and furnish no source of energy. ' But as the earth

revolves, the crest of the tidal wave moves apparently in the

opposite direction, meets the shores of the continents, and
forces the water up the bays and rivers, where energy is wasted

in friction upon the shores or may be made use of for turning

mill-wheels. It is evident that all the energy derived from the
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tides comes from the rotation of the earth upon its axis ; and

a part of the energy of the earth's rotation is, therefore, being

dissipated in the heat of friction they cause.

The internal heat of the earth and a few other forms of

energy, such as that of native sulphur, iron, etc., are of little

consequence as sources of useful energy. They may be con-

sidered as the remnants of the original energy of the earth.

175. Energy of the Sun.—It has been seen that the sun's

rays are the source of all the forms of energy practically avail-

able, except that of the tides. It has been estirnated that the

heat received by the earth from the sun each year would melt

a layer of ice over the entire globe a hundred .feet in thickness.

This represents energy equal to one horse-power for each fifty-

square feet of surface, and the heat which reaches the earth is

only one twenty-two-hundred-millionth of the heat that leaVes

the sun. Notwithstanding this enormous expenditure of en-

ergy, Helmholtz and Thomson have shown that the nebular

hypothesis, which supposes the solar system to have originally

existed as a chaotic mass of widely separated gravitating par-

ticles, presents to us an adequate source for all the energy of

the system. As the particles of the system rush together by
their mutual attractions, heat is generated by their collision

;

and after they have collected into large masses, the conden-

sation of these masses continues to generate heat.

176. Dissipation of Energy.—It has been seen that only

a fraction of the energy of heat is available for transformation

into other forms of energy, and that such transformation is

possible only when a difference of temperature exists. Every

conversion of other forms of energy into heat puts it in a form

from which it can be only partially recovered. Every transfer

of heat from one body to another, or from one part to another

of the same body, tends to equalize temperatures, and to

diminish the proportion of energy available for transformation.

Such transfers of heat are continually taking place ; and, sa
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far as our present knowledge goes, there is a tendency toward

an equality of temperature, or, in other words, a uniform mo-
lecular motion, throughout the universe. If this condition of

things were reached, although the total amount of energy

existing in the universe would remain unchanged, the possibil-

ity of transformation would be at an end, and all activity and
change would cease. This is the doctrine of the dissipation of

energy to which our limited knowlefdge of the operations of

nature leads us ; but it must be remembered that our knowl-

edge is very limited, and that there may be in nature the

means of restoring the differences upon which all activity de-

pends.



MAGNETISM AND ELECTRICITY.

CHAPTER I.

MAGNETISM.

177. Fundamental Facts.—Masses of iron ore are some-

times found which possess the property of attracting pieces of

iron and a few other substances. Such masses are called natu-

ral magnets or lodestones. A bar of steel may be so treated

as to acquire similar properties. It is then called a magnet.

Such a magnetized steel bar may be used as fundamental in

the investigation of the properties of magnetism.

If pieces of iron or steel be brought near a steel magnet,

they are attracted by it, and unless removed by an outsidci

force they remain perjnanently in contact with it. While in

contact v^ith the magnet, the pieces of iron or steel also ex-

hibit magnetic properties. The iron almost wholly loses these

properties when removed from the magnet. The steel retains

them and itself becomes a magnet. The reason for this differ-

ence is not known. It is usually said to be due to a coercive

force in the steel. The attractive power of the original magnet
for other iron or steel remains unimpaired by the formation of

new magnets!

A body which is thus magnetized or which has its mag-
netic condition disturbed is said to be affected by magnetic

induction.
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In an ordinary bar magnet there are two small regions, near

the ends of the bar, at which the attractive powers of the mag-

net are most strongly manifested. These regions are called

the poles of the magnet. The line joining two points in these

regions, the location of which will hereafter be more closely-

defined, is called the magnetic axis. An imaginary plane drawn

normal to the axis at its middle point is called the equatorial

plane.
'

If the magnet be balanced so as to turn freely in a horizon-
'

tal plane, the axis assumes a direction which is approximately

north and south. The" pole toward the north is usually called

the north or positive pole ; that toward the south, the south or

negative pole.

If two magnets be brought near together, it is found that

their like poles repel and unlike "poles attract one another.

If the two poles of a magnet be successively placed at the

same distance from a pole of another magnet, it is found that

, the forces exerted are equal in amount and oppositely directed,

The direction assumed by a freely suspended magnet shows,

that the earth acts as a ma,gnet, and that its north magnetic

pole is situated in the southern hemisphere.

If a bar magnet be broken, it is found that two new poles,

are formed, one on each side of the fracture, so that the two^

portions are each perfect magnets. This process of making
new magnets by subdivision of the original one may be, so far

as known, continued until the magnet is divided into its least

parts, each of which will be a perfect magnet.

This last experiment enables us at once to adopt the view

that the properties of a magnet are due to the resultant action

of its constituent magnetic molecules.

178. Law of Magnetic Force.—By the help of the torsion

balance, the principle of which is described in §§ 82, 188, and .

by using very long, thin, and uniformly magnetized bars, in
,

which the poles can be considered as situated at the extremi-
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ties, Coulomb showed that the repulsion between two similar

poles, and the attraction between two dissimilar poles, is in-

versely as the square of the distance between them.

Coulomb also demonstrated the same law by another

method. He suspended a short magnet so that it could oscil-

late about its centre in the horizontal plane. He first ob-

served the time of its oscillation when it was oscillating in the

earth's magnetic field. He then placed a long mkgnet verti-

cally, so that one of its poles was in the horizontal plane of

the suspended magnet, and in the magnetic meridian passing

through its centre, and observed the times of oscillation when-

the pole of the vertical magnet was at two different distances

from the suspended magnet. . If we represent by / the moment
of inertia of the suspended magnet, by M its magnetic moment,
by ^the horizontal intensity of the earth's magnetism, by k^

and ^j the force in the region occupied by the susperided niag-

net due to the vertical magnet in its two positions, it may be
shown as in § 183 that the times of oscillation of the suspended

magnet should be respectively /jf = tt y tf?>> ^^j — ^^ T~TJr*tilVl hyti

t^^ = ^rj-iTf- From such equations, by elimination of If,

the Values of A, and A, were obtained, and were found to be in

accordance with the law of magnetic force already given.

All theories of magnetism assume that the force between,

two magnet poles is proportional to the product of the strengths

of the poles. The law of magnetic force is then the same as

that upoh which the discussion of potential (§§ 28, 29) was
based. The theorems there discussed are in general applicable

in the study of magnetism, although modifications in the details

of their application occur, arising from the fact that the field

of force about a magnet is due to the combined action of two
dissimilar and equal poles.

If fft and m, represent the strengths of two magnet poles, r

15
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the distance between them, and k a factor depending on the

units in which the strength of the pole is measured, the formula

expressing the force between- the poles is k-—^.

179. Definitions of Magnetic Quantities.—The law of

magnetic force enables us to define a unit magnet pole, based

upon the fundamental mechanical units.

If two perfectly similar magnets, infinitely thin, uniformly

and longitudinally magnetized, be so placed that their positive

poles are unit distance apart, and if these poles repel one an-

other with unit force, the magnet poles are said to be of unit

strength. Hence, in the expression for the force between two

poles, k becomes unity, and the dimensions of ^ are those of

a force. That is,

[a = MLT--

from which the dimensions of a magnet pole are

This definition of a unit magnet pole is the foundation of the

magnetic system of units. The strength of a magnet pole is then

equal to the force which it will exert on a unit pole at unit

distance.

The product of the strength of the positive pole of a uni-

formly and longitudinally magnetized magnet into the distance

between its poles is called its magnetic moment.

The quotient of the magnetic moment of such a magnet by
its volume, or the magnetic moment of unit of volume, is called

the intensity ofmagnetization.

The dimensions of magnetic moment and of intensity of
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magnetization follow from these definitions. They are respec

tively

\ml^ = MiL^T— and [^p{=MiL-^T-\

180. Distribution of Magnetism in a Magnet.—If we con-

ceive of a single row of magnetic molecules with their uillike

poles in contact, we can easily see that all the poles, except,

those at the ends, neutralize one another's action, and that'

such a row will have a free north pole at one end and a free

south pole at the other. If a magnet be thought of as made
up of a combination of such rows of different lengths, the ac-

tion of their free poles may be seen to be the same as that of

an imaginary distribution of equal quantities of north and south

magnetism on the surface and throughout the volume of the

magnet. If the magnet be uniformly magnetized, the volume

distribution becomes zero. The surface distribution of magnet-

ism will sometimes be used to express the magnetization of a

magnet. In that case what has hitherto been called the mag-

netic intensity becomes the magnetic density. It is defined as

the ratio of the quantity of magnetism on an element of sur-

face to the area of that element. To illustrate this statement,

we will consider an infinitely thin and uniformly magnetized

bar, of which the length and cross-section are represented by

I and s respectively. Its magnetic intensity is —,- or — ., If,

now, for the pole m we substitute a continuous surface distri-

button over the end of the bar, then - is also the density of

that distribution.

The dimensions of magnetic density follow from this defini-

tion. They are

[7]
= -^^-=^4— =MiL-iT-K
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Coulomb showed, by a method of oscillations similar to that

described in §178, that the magnetic force at different points

along a straight bar magnet gradually increases from the mid-

dle of- the bar, where it is inlperceptible, to the extremities.

This would not be the case if the bar magnet were made up of

equal straight rows of magnetic molecules in contact, placed,

side by side. With such an arrangement there would be no,

force at any point along the bar, but it would all appear at the.

two ends. The mutual interaction of the molecules of contig-..

uous rows make such an arrangement, however, impossible.

In the earth's magnetic field, in which the hnes of magnetic

force may be considered parallel, a couple will be set up on

any magnet, so magnetized as to have only two poles, due to

the action of equal quantities of north and south magnetism

distributed in the magnet. The points at which the forces mak-

ing up this couple are applied are the poles of the magnet, and ,

the line joining them is the magnetic axis. These definitions

are more precise than those which could be given at the outset,;,

181. Action of One Magnet on Another.—^The investiga-

tion of the mechanical action of one magnet on another is im-

portant in the construction of apparatus for the measurement

of magnetism.

(i) To determine ih.^ potential of a short bar magnet at a

^p point distant from it, let NS (Fig., 55)

represent the magnet of length 2/,. the.,

poles of which are of strength m, and

g Q ^
let the point P be at a distance r fromh:

FiG. 55.
the centre of the magnet, taken as ori-

gin. Let the x axis coincide with the axis of the magnet.

The potential at P is then

y = K(/ + (^ -/)=)* ~ (/-f (^-f//)*)



I8i]' MAGNETISM. 229

This expression expanded gives

2mlx ^mPx ^mrx'

if we assume r so large that we may neglect terms of higher

order in /. ~ The first term is the most important, and if r be

very great compared with /, the other terms may be neglected.

The ratio - is the cosine of the angle PON or B. If we rep-

resent the magnetic moment 2ml, as is generally done, by M,
the potential at any very distant point becomes

75 cos ft (7i)

Since cos is zero for all points in a plane through the ori-

gin at right angles to the magnetic axis, that plane is an equi-

potential surface of zero potential. It is the plane defined as

the equatorial plane. The lines of force evidently originate at

the poles and pass perpendicularly through this surface. This

system of lines of force can be easily illustrated by scattering

fine iron filings on a sheet of paper held over a bar magnet.

They will arrange themselves approximately along the lines of

force.

At a point on the line of the axis where r==x, the poten-

tial becomes

^-J.+^+--- (73)

(2) In one method of application of the instrument called the

magnetometer it is necessary to know the expression for the

moment of couple set up by the action of a magnet at right
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angles to another, the centre of which is in the prolongation'

of the axis of the first magnet. Let the centre of the first

magnet be the origin, and its axis the x axis. Represent the

strength of its poles by m, and the Strength of the pole of the

second magnet by m^, the lengths of the two magnets by 2/

and 2j/ respectively. To determine the moment of couple due
to the action of the first magnet on the second, we must first,

find the component along the x axis of the force due to the

first magnet on a pole m^, at a point distant y from the x axis.

^^
The force due to the pole of

^
the first magnet at N (Fig. 56)

on a pole »2^ is

Fig. 56. f^{x-iY
The cosine of the angle made by this force with the x axis is

X — I

(y' \(^_ ^\n» - Hence the component of this force along the

X axis is

mm^{x — /)

Hence the component along the x axis of the whole force on
the pole m^, due to the first magnet, is

mmJ
J

.
X — I x_^ I ,

.(/ + (^ - i)y ~ (/ + (F^nW'

When this expression is expanded in increasing negative pow-
ers of X, neglecting all terms containing higher powers of x
than the fifth, we obtain

/ I ,
2/' 3/\
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t

An equal and oppositely directed component acts upon the

other pole — m^ of the second magnet. Hence the moment
of couple due to the action of the first magnet upon the sec-

'

end is

/ I 2/" % -fK
Smm,fy[-,-{-^-^). (74)

If jf be such that 37' = 2/", or if the ratio of the lengths of

the two magnets used be i : Vi-S, the second and third, terms

vanish, and the expression for the moment of couple depends

only on the first term of the series. In practice it is not pos-

sible to completely neglect the other terms, on account of the

uncertainty as to the position of the poles in the figure of a

magnet, but by making the lengths of the two- magnets as i to

Vi.S, the numerator of the term having x^ in the denominator

is made very small, and is eliminated by the method of obser-

vation employed, as will be explained in the discussion of the

magnetometer.

182. The Magnetic Shell.—A magnetic shell may be de-

fined as an infinitely thin sheet of magnetizable matter, mag-
netized transversely ; so that any line in the shell normal to its

surfaces may be looked on as an infinitesimally short and thin

magnet. These imaginary magnets have their like poles con-

tiguous. The product of the intensity of magnetization at

any point in the shell into the thickness of the shell at that

point is called the strength of the shell at that point, and is de-

noted by the symbol/.

The dimensions of the strength of a magnetic shell follow

at once from this definition. We have {j'\ equal to the dimen-
sions of intensity of magnetization multiplied by a length.

Therefore {j^ = MiLiT'K
We obtain first the potential of such a shell of infinitesi-



232 ELEMENTARY PHYSICS. [182

mal area. Let the origin (Fig. 57) be taken half-way between
'''

^P the two faces of the shell, and let the

„>^ } shell stand perpendicular to the x
^'^' \y axis. Let a represent the area of th©

^,''^ 1 shell, supposed infinitesimal, 2/ the

°(ir
"""

thickness of the shell, and d the mag-
^'°-57- • netic intensity. The volume of this

infinitesimal magnet is 2al, and from the definition of mag-

netic intensity 2ald is its magnetic moment;. The potential

at the point P is then given by Eq. 72, since / is so small that

all but the first term in the series of Eq. 71 maybe neglected; ^

We have
'

„ if , . 2aldV= —rcos 6 = —— cos a.
r r

Now a cos 6 is the projection of the area of the shell upon a

plane through the origin normal to the radius vector r, and,

ft
"*

since a is infinitesmal, 5— is the solid angle eo bounded by

the lines drawn from P to the boundary of the area a. The
potential then becomes V= ialdoo =^ jw, since 2ald is what has

been called the strength of the shell.

The same proof may be extended to any number of con-

tiguous areas making up a finite magnetic shell. The potential/

due to such a shell is then "Sjoo. If the shell be of uniform

strength, the potential due to it becomes j'2oo and is got by
summing the elementary solid angles. This sum is the solid-

angle £1, bounded by the lines drawn from the point of which,

the potential is required to the boundary of the shell. The
potential due to a magnetic shell of uniform strength is there-

fore

J^- (75):

It is independent of the form of the shell, and dependent* only
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on the form of its boundary. At a point very near the positive

face of a flat shell, so near that the solid angle subtended by,

the shell equals 2!r, the potential is 2nj; at a point in the plane

of the shell outside its boundary where the angle subtended is

zero, the potential* is zero ; and near the other or negative

face of the shell it is — znj. The whole work done, then, in

moving a unit magnet pole from a point very near one face to

a point very near the other face is 47r;'. This result is of im-

portance in connection with electrical currents.

183. Magnetic Measurements.—It was shown by Gilbert

in a work published in 1600, that the earth can be considered

as a magnet, having its positive pole toward the south and its

negative toward the north. The determination of the mag-

netic relations of the earth are of importance in navigation

and geodesy. The principal magnetic elements are the de-

clination, the dip, and the horizontal intensity.

The declination is the angle between the magnetic meridian,

or the direction asaumed by the axis of a magnetic needle

suspended to move freely in a horizontal plane, iand the geo-

graphical meridian.

The dip is the angle made with the horizontal by the axis

of a magnetic needle suspended so as to turn freely in a verti-

cal plane containing the magnetic meridian.

The horizontal intensity is the strength of the earth's mag-

netic field resolved along the horizontal line in the plane of the

magnetic meridian. A magnet pole of strength ot in a field in

which ' the horizontal intensity is repiresented byH is urged

along this horizontal line with a force equal to mH. From,

this equation the dimensions of the horizontal intensity, and

so also of the strength of a magnetic field in any case, are
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The horizontal intensity can be measured relatively to some

assumed magnet as standard, by allowing the magnet to oscil-

late freely in the horizontal plane about its centre, and noting

the time of oscillation. The relation between the magnetic

moment M of the magnet and the horizontal intensity H is

calculated by a formula analogous to that employed in the

computation of g from observations with the pendulum. If

the magnet be slightly displaced from its position of equilib-

rium, so as to make small oscillations about its point of sus-

pension, it can be shown as in § 39 that it is describing a simple

harmonic motion, and as in § 41 (i) that the kinetic energy of

the magnet when its axis coincides, during an oscillation, with

the magnetic meridian is

The potential energy at the extremity of its arc is due to the

magnetic force mH acting on the poles. The component of

this force which is efficient in moving the magnet is mH sin a

or mHa, if a be always very small. Since a varies between

and 0, the average force sufficient in turning the needle is

\mH(t>. The poles upon which this force acts move from the

position of maximum kinetic energy to the position of no

kinetic energy, through a distance Icjt, if / represent the half

length of the magnet. The potential energy of the couple

formed by the two poles of the magnet is then mHl<t>^, and

this is equal to the kinetic energy at the point of equilibrium

;

that is,

Hence if we write 2ml= M, the magnetic moment of the mag-
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4?rY >

net, we obtainMH = -r™- ; or if we take the time of oscillation

T
as / = — , we have

2

MH=~ (76)

The moment of inertia / may be either computed directly

from the magnet itself, if it be of symmetrical form, or it may
be determined experimentally by the method of § 36, Eq. 23,

which applies in this case. The horizontal intensity is then

determined relative to the magnetic moment of the assumed

standard magnet.

This measure may be used to give an absolute measure of

H by combining with it another' observation which gives an

independent relation between M and H. In one arrangement

of the apparatus two magnets are used : one, the deflected mag-
net, so suspended as to turn freely in the horizontal plane ; and
the other, the deflecting magnet, the one of moment M used in

the last operation, carried upon a bar which can be turned

about a vertical axis passing through the point of suspension

of the deflected magnet. The centre of the deflected magnet
is in the prolongation of the axis of the deflecting magnet, and,

when the apparatus is used, the carrier bar is turned until the

two magnets are at right angles to one another. The .equilib-

rium established is due to two couples acting on the deflected

magnet, one arising from the action of the earth's magnetism,
and the other from that of the deflecting magnet. This latter

has been already discussed in § 181. The couple acting on the

deflected magnet is expressed by ifMm,y\—-^-\—A, where P
represents the small numerator of the correction term. This

correction can be made very small in practice by giving to the ,
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magnet, as already explained, lengths in the ratio of i to ^1.5.

The opposing equal couple is im^Hy sin 0, where represents

the angle of deflection from the magnetic meridian. We have

then 4Mmj\^-^+^J = 2my^JI sin 0, or -^+^ = - -^sin <p.

Since P is always a very small quantity, this equation may be

written

M . ( P\ . .

j^ = i^5m(t>\i-^y (7;)

P is determined by measuring the angles 4> and 0^ for two dif-

ferent distances x and x^. The equations containing the results

of these measurements are

M_
H

and

= ij;* sin 0(1 — ^j

From these equations the value of P is found to be equal to

^x' sin <p — ^x/ sin 0^

ix sin — ix^ sin 0^

"

By substitution of this value of P in either of the above equa-

tions, the value of jjr is obtained in absolute units. By com-

bination of Eq. (76) and Eq. {77) the value of JI is obtained
independent of M,, and in absolute units.

• It is evident that the value of M can be obtained also in

absolute units from the same equations.
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In determinations of the horizontal intensity in which great

accuracy is desired, corrections must be introduced in these

equations for the changes of magnetic moment due to changes

of temperature (§ 185) and to induction (§ 184).

184. Magnetic Induction.—In the
,
foregoing discussions

the effect of magnetic induction has been neglected, and the:

magnets considered are those known, as permanent magnets.

Phenomena, however, arise when bodies not permanently mag-

netized are brought into a magnetic field, which are due to

magnetic induction. It was found by Faraday that all bodies

are affected by the presence of a magnet. Some of them, such

as iron, nickel, cobalt, and oxygen, seem to be attracted by

the magnet. Others, such as bismuth, copper, most organid

substances, and nitrogen, seem to be repelled from the magnet.

The former are said to be ferromagnetic or paramagnetic ; the

latter, diamagnetic.

The most obvious explanation of these phenomena, and the

one adopted by Faraday, is to ascribe the)ii to a distribution

of the induced magnetization in paramagnetic bodies, in an

opposite direction from that in diamagnetic bodies. If a para-

magnetic body be brought between two opposite magnet poles,

a north pole is induced in it near the external south pole, and

a south pole near the external north pole. The magnetic

separation is then said to be in the direction of the lines of

force. According to this explanation, then, the separation of

the induced magnetization in' a dianiagnetic body is in a,direc-

tion opposite to that of the lines of force. In other words, if

a diamagnetic body be brought between two opposite magnet

poles, the explanation asserts that a north pole is induced in \t

near the external north pole, and a south pole near the exter-

nal south pole.

One of Faraday's expei"imehts, however, indicates that the

different behavior of bodies of these two classes may be due

only to a more or less intense manifestation of the same action.
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He found that a solution of ferrous sulphate, sealed in a glass

tube, behaves, immersed in a weaker solution of the same salt, as

a paramagnetic body ; but, when immersed in a stronger solu-

tion, as a diamagnetic body. It may, from this experiment, be

concluded that the direction of the induced magnetization is

the same for all bodies, and that the exhibition of diamagnetic

or paramagnetic properties depends, not upon the direction of

induced magnetization, but upon the greater or less intensity

of magnetization of the surrounding medium.

Faraday discovered that many bodies, while in a vacuum,

exhibit diamagnetic properties. In accordance with this ex-

planation, we must conclude that a vacuum can have magnetic

properties. It seemed to Faraday unlikely that this should be

the case, and he therefore adopted the explanation which was

first given. As it has been since shown that the ether which

serves as a medium for the transmission of light, and which

pervades every so-called vacuum, is also probably concerned in

electrical and magnetic phenomena, there is no longer any

reason for the, opinion that the possession of magnetic proper-

ties by a vacuum is inherently improbable. In accordance

with this view, in what follows we shall adopt the second ex-

planation, which was developed by Thomson.

In order to express the difference between paramagnetic

and diamagnetic bodies it is necessary to use some definitions

which did not appear in the treatment of permanent magnets.

To understand these it is necessary to determine the magnetic

force within a magnet, as upon it depends the' induced mag-
netization. The force in the interior of a magnet is measured

by considering an infinitely short cylinder or thin disk, tjie

axis of which is parallel to the axis of the magnet, cut out of

the interior of the magnet. The force exerted upon a magnet
pole within this space is the force to be considered. Assume
a straight bar magnet, uniformly and longitudinally mag-
netized, and suppose such a disk cut out within it, with faces
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perpendicular to the magnetic axis. We may then assume

(§ 180) that there will be a uniform distributipn of magnetism

on both faces of the disk, positive on one face and negative on

the other. The force due to this imaginary distribution on a

pole in the centre of the disk will be twice that due to one

face. If its density be called i, by § 29 (3) the fordfc due

to one face is zni. If there be besides a magnetic force F in

the field, the total force on the pole is F-\- 4m. If the straight

bar be not originally magnetized, and be placed in a uniform

magnetic field, it is assumed that i is proportional to F. Let

i= kF, and call k the coeficient of induced magnetization. We
have then the total force within the cavity equal to {i-{-47tk)F.

This quantity is called by Maxwell the magnetic induction, and

the factor i \- ^Ttk the magnetic inductive capacity of the sub-

stance. Thomson and Rowland call it the magnetic permea-

bility.

Now, to make clear what is meant by thp classification of

bodies as paramagnetic and diamagnetic, we may proceed as

follows. Suppose an infinitesimal cube of the substance to be

tested placed in a magnetic field which is not uniform, with

one of its faces normal to the lines of force. The intensity of

the induced magnetization will be kF, if we assume that the
' cube is so small that we may neglect the variation of its in-

duced magnetization, due to the variation within it pf the

magnetic force F. In most bodies k is so small that we may
also ^assume that the induced magnetization does not appre-

ciably alter the field,, and that the force and potential at a

point within the cube are the" same as if it were not there. The
resultant magnetization is equivalent (§ 180) to a distribution

of magnetism over the two faces normal' to the" lines of force,

with a density equal to kF, positive on the face ,turned toward

the positive direction of the lines of force, and negative on the

other face. Let the length of an edge pf the cube be denoted

by a. Then the quantity of magnetism, on eafch of the two
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faces is klV. We are to determine the work done by a move-

ment of the cube from one point in a magnetic field to another.

To do this we will determine first the work done by the mag-

netism on one face of the cube during the movement.

Consider a series of equidistant points, designated by
I, 2, "3, . . . n, on a line of force. Represent by V^, V^, . . . V^

the potentials of those points, of which V^ is the greatest and f^

the least value of the potential between the points i and n, and

suppose the points to be so taken that the differences of poten-

tial between any two consecutive ones is indefinitely small. The
work done by a quantity of m^ignetism equal to kFa* in mov-
ing from the point i to the point 2 is kFc^{V^—V^. If F^ and

F^ represent the values of F at the points i and 2, the average

force in the distance between them may be set equal to

F 4- F^— -, and the average quantity of induced magnetization on
i

the face of the cube considered during this movement is

2

The work done is then

—

From I to 2, tt'l^^^iy, - V,)

\ 2 ' 2 2 2 /

From n — I ton,

= a'Jh[^
F«_,

,
F„V„., F„^,V„ F„V„\
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The work done in moving from the point i to the point n
is the sum of these terms.

To effect the summation we must show that all terms

F V F V
similar to the two terms —^— ^—

^ will vanish.
2 2

The force at the point 2 is the space rate of change of

potential at that point, taken with the opposite sign. If d
represent the distance between any two consecutive points, we

V —V
have F^ = '—-j—^ in the limit, as d approaches zero. So

V — V
also i% = ^—-j—^ in the limit. Using these values, we have

for the sum above mentioned

2 4^ ,

*

Now in the limit, as the distances between the points i, 2, 3, 4,

approach zero, we have V^ = V^ V„ and F," = F, F^ ; hence

the terms considered and all similar ones vanish. The total

work done in moving from i to « is

...(^-._^).

If we bear in mind our assumption that we may'neglect the

variation of induced magnetism within the cube in any one

position, we may express the work done by the movement of

the quantity — ka'F on the opposite face of the cube from a

point at the distance a measured along a line of force from the

point I, to a point similarly situated with respect to the point

«, by

^,J^AV.-^^K) F„{V„^AV„)\

\ 2 2 /'

16
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In this expression A V^ represents the difference in poterttial

between the point i and the point at distance a from it at

which the potential is higher than F",, and A Vn represents a

similar difference between the point n and the point at distance

a from it at which the potential is higher than Vn- The work

done by the whole cube in moving from the point i to the

point n is the sum of the quantities of work done by the quan-

tities of magnetism on its two faces, and is hence equal to

From the relation between force and potential we have, in the

AV AVn
limit, as a becomes indefinitely small, F^ = ^ and F„ =

,

since the distance a is measured in the negative direction.

Substituting these values, the expression for the work done by

the cube becomes W

^

{F^ — F^'). The free movement

of any system is such as to do work. Hence the cube will

move from the point i along the line of force toward n if free

to do so, in case W is positive.

Two cases may arise depending on the substance of which

the cube is composed. We assume the value of k for vacuum
as zero. If k for any body be positive, the body is paramag-

netic, and W \sy-o when F^ K F„; the cube moves from a

place of weaker to a place of stronger magnetic force. If k

be negative, the body is diamagnetic, and W is > o when
F^y F„; the cube moves from a place of stronger to a place

of weaker magnetic force.
y

The subject may be looked at from a different point of

view. The coefificient of induced magnetization k is negative

in all diamagnetic bddies, but its numerical value is small. It

has never been found to be numerically greater than — in
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diaiiiagnetic bodies. In such bodies, therefore, the value of }x,

the magnetic permeability, is less than i, though never negative.

When k vs, o, II equals i, and for paramagnetic bodies jx is

greater than i. The ratio of the force within the substance of

which the magnetic permeability is }i to that in vacuum, in
'

N
which it is supposed to be placed, is -vr = i + A'"^k = /x. If

the convention of §2i be used, by which the strength of a

field of force is represented by the number of lines of force

passing perpendicularly through unit area, it is evident that

when a paramagnetic body in which /* > i and Ny F ii

brought into the field, the lines of force are converged into the

body. When a diamagnetic body is in the field the lines of

force are deflected from it.

As may be easily seen, a paramagnetic body of permea-

bility jx, surrounded by a medium also paramagnetic, but of

permeability /z, > /z^, will act relative to the medium as a dia-

magnetic body. The condition of any body of which the

permeability is less than that of the medium in which it is im-

mersed is like that of a weak magnet between the ends of two

stronger ones, all three being magnetized in the same direc-

tion. The movements of both paramagnetic and diamagnetic

bodies may be rqughly illustrated by the movements of. bodies

immersed in water, which rise or sink according as their specific

gravities are less or greater than the specific gravity of water.

185. Changes in Magnetic Moment.—When a magnet-

izable body is placed in a powerful magnetic field, it often

receives, temporarily, a more intense magnetization than it can

retain when removed. It is said to be saturated, or magnetized

to saturation, when the intensity of its magnetization is the

greatest which it can retain when not under the inductive

a,ction of other magnets. The coercive force of steel is much
greater than that of any other substance; the intensity of

magnetization which it can retain is, therefore, relatively very
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great, and it is hence used for permanent magnets. It is found

that the coercive force depends upon the quality and temper

of the steel.

Changes of temperature cause corresponding changes in the

magnetic moment of a magnet. If the temperature of a mag-

net be gradually raised, its magnetic moment diminishes by an

amount which, for small temperature changes, is nearly pro-

portional to the change of temperature. The magnet recovers

its original magnetic moment when cooled again to the initial

temperature, provided that the temperature to which it was

raised was never very high. If it be raised, however, to a red

heat, all traces of its original magnetism permanently disap-

pear. Trowbridge has shown that, if the temperature of a

magnet be carried below the temperature at which it was

originally magnetized, its magnetic moment also temporarily

diminishes.

Any mechanical disturbance, such as jarring or friction,

which increases the freedom of motion among the molecules of

a magnet; in general brings about a diminution of its magnetic

moment. On the other hand, similar mechanical disturbances

facilitate the acquisition of magnetism by any magnetizable

body placed in a magnetic field.

l86. Theories of Magnetism.—It has .been shown by
mathematical analysis that the facts of magnetic interactions

and distribution are consistent with the hypothesis, which we
have already made, that the ultimate molecules of iron are

themselves magnets, having north and south poles which

attract and repel similar poles in accordance with the law of

magnetic force. Poisson's theory, upon which most of the

earlier mathematical work was based, was that there exist in

each molecule indefinite quantities of north and south magnetic

fluids, which are separated and moved to opposite ends of the

molecule by the action of an external magnetizing force.

Weber's view, which is consistent with other facts that Pois-
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son's theory fails to explain, is that each molecule is a magnet,

with permanent poles of constant strength, that the molecules

of an iron bar are, in general, arranged so as to neutralize one

another's magnetic action, but that, under the influence of an

external magnetizing action, they are arranged so that their

magnetic axes lie more or less in some one direction. The bar

is then magne'tized. On this hypothesis there should be a

limit to the possibible intensity of magnetization, which would

be reached when the axes of all the molecules have the same

direction. Direct experiments by Jqule and J. Miiller indicate

the existence of such a limit. An experiment of Beetz, in which

a thin filament of iron deposited electrolytically in a strong

magnetic field becomes a magnet of very great intensity, points

in the same direction. The coercive force is, on this hypothesis,

the resistance to motion experienced by the molecules. The
facts that magnetization is facilitated by a jarring of the steel

brought into the magnetic field, that a bar of iron or steel after

being removed from the magnetic field retains some of its

magnetic properties, that the dimensions of an iron bar are

altered by magnetization, the bar becoming longer and dimin-

ishing in cross-section, and that a magnetized steel bar loses its

magnetism if it be highly heated, are all facts which are best

explained by Weber's hypothesis.



CHAPTER II.

ELECTRICITY IN EQUILIBRIUM.

187. Fundamental Facts.—(i) If a piece of glass and a piece

of resin be brought in contact, or preferably rubbed together,

it is found that, after separation, the two bodies are attracted

towards each other. If a second piece of glass and a second

piece of resin are treated in like manner, it is found that the

two pieces of glass repel each other and the two pieces of resin

repel each other, while either piece of glass attracts either piece

of resin. These bodies are said to' be electrified or charged.

All bodies may be electrified, and in other ways than by
contact. It is sufificient for the present to consider the single

example presented. The experiment shows that bodies may
be in two distinct and dissimilar states of electrification. The
glass treated as has been described is said to be vitreously or

positively electrified, and the resin resinously or negatively elec-

trified. The experiment shows also that bodies similarly elec-

trified repel one another, and bodies dissimilarly electrified at-

tract one another.

(2) If a metallic body, supported on a glass rod, be touched

by the rubbed portion of an electrified piece of glass, it will

become positively electrified. If it be then joined to another

similar body by means of a metallic wire, the second body is at

once. electrified. If the connection be made by means of a

damp linen thread, the second body becomes electrified, but not

so rapidly as before. If the connection be made by means of

a dry white silk thread, the second body shows no signs of

electrification, even after the lapse of a considerable time.

Bodies are divided according as they can be classed with the
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metals, damp linen, or silk, as good conductors, poor conductors,

and insulators. The distinction is one of degree. All con-

ductors offer some opposition to the transfer of electrification,

and no body is a perfect insulator.

A conductor separated from all other conductors by insu-

lators is said to be insulated. A conductor in conducting con-

tact with the earth is said to he. grounded or joined to ground.

During the transfer of electrification in the experiment

above described the connecting conductor acquires certain

pfoperties which will be considered under the head of Electri-

cal Currents.

(3) If a positively electrified body be brought near an insu-

lated conductor, the latter shows signs of electrification. The
end nearer the first body is negatively, the farther end posi-

tively, electrified. If the first body be removed, all signs of

electrification on the conductor disappear. If, before the first

body is removed, the conductor be joined to ground, the posi-

tive electrification disappears. If now the connection with

ground be broken, and the first body removed, the conductor

is negatively electrified.

The experiment can be carried out so as to give quantita-

tive results, in a way first given by Faraday. An electrified

body, for example a brass ball suspended by a silk thread, is

introduced into the interior of an insulated closed metallic

vessel. The exterior of the vessel is then found to be electri-

fied in the same way as the ball. This electrification disap-

pears if the ' ball be removed. If the ball be touched to the

interior of the vessel, no change in the amount of the external

electrification can be detected. If, after the ball is introduced

into the interior, the vessel be joined to ground by a wire, all

external electrification disappears. If the ground connection

be broken, and the ball removed, the vessel has an electrifica-

tion dissimilar to that of the ball. If the ball, after the ground

connection is brpken, be first touched to the interior of the
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vessel and then removed, neither the ball nor the vessel is any

longer electrified.

' A body thus electrified without contact with any charged

body is said to be electrified by induction. The above-men-

tioned facts show that an insulated conductor, electrified by

induction, is electrified both positively and negatively at once,

that the electrification of a dissimilar kind to that of the in-

ducing body persists, however the insulation of the conductor

be afterwards modified, and that the total positive electrifica-

tion induced by a positively charged body is equal to that of

the inducing body, while the negative electrification can ex-

actly neutralize the positive electrification of the inducing

body.

The use of the terms positive and negative is thus justified,

since they express the fact that equal electrifications of dis-

similar kinds are exactly complementary, so that, if they be

superposed on a body, that body is not electrified. These two

kinds of electrification may then be spoken of as opposite.

If the glass and resin considered in the first experiment be

rubbed together within the vessel, and in general if any appa-

ratus which produces electrification be in operation within the

vessel, no signs of any external electrification can be detected.

It is thus shown that, whenever one state of electrification is

produced, an equal electrification of the opposite kind is also

produced at the same time.

Franklin showed that, by the use of a closed conducting

vessel of the kind just described, a charged conductor intro-

duced into its interior and brought into conducting contact

with its walls is always completely discharged, and the charge

is transferred to the exterior of the vessel. This procedure

furnishes a method of adding together the. charges on any
number of conductors, whether they be charged positively or

negatively. It is thus theoretically possible to increase the

charge of such a conductor indefinitely.
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(4) If any instruxnent for detecting forces due to electrifica-

tions be introduced into the interior of a closed conductor

charged in any manner, it is found that no signs of force due

to the qharge can be detected. The experiment was accurately

executed by Cavendish, and afterwards tried on a large scale

by Faraday. It proves that within a closed electrified con-

ductor there is no electrical force due to the charge on » the

conductor, or that the potential due to the electrical forces is

uniform within the conductor.

188. Law of Electrical Force.—If two charged bodies be

considered, of dimensions so small that they may be neglected

in comparison with the distance between the bodies, the stress

between the two bodies due to electrical force is proportional

directly to the product of the charges which they contain, and

inversely to the square of the distance between them.

If Q and Q, represent two similar charges, r the distance

between them, and k a factor depending on the units in which
the charges are measured, the formula expressing the repulsion

between them is

Coulomb used the torsion balance (§ 82) to demonstrate this

law. At one end of a glass rod suspended from the torsion

wire and turning in the horizontal plane is placed a gilded pith

ball, and through the lid of the case containing the apparatus

can be introduced a similar insulated ball so arranged that its

centre is at the same distance from the axis of rotation of the

suspended system, and in the same horizontal plane, as the

centre of the first ball. This second ball may be called the

carrier.

To prove the law as respects quantities, the suspended ball

is brought into equilibrium at the point afterwards to be occu-

pied by the carrier ball. The carrier ball is then charged and
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introduced into the case. When it comes in contact with the

suspended ball, it shares its charge with it and a repulsion

ensues. The torsion head must then be rotated until the sus-

pended ball is brought to some fixed point, at a distance from

the carrier which is less than that which would separate the

two balls in the' second part of the experiment if no torsion

were brought upon the wire. The repulsion is then measured

in terms of the torsion of the wire. The charge on the carrier

is then halved, by touching it with a third similar insulated

ball, and, the charge on the suspended ball remaining the same,

the repulsion between the two balls at the same distance' is

again observed. If the case be so large that no disturbing

effect of the walls enters, and if the balls be small and so far

apart that their inductive action on one another may be neg-

lected, the repulsion in the second case is found to be one half

that in the first case. In general the problem is a far more
difficult one, for the distribution on the two spheres is not

uniform. That portion of the distribution dependent on the

'

induction of the balls can be calculated, but the irregularities

of distribution due to the action of the walls of the case and

other disturbing elements can only be allowed for approxi-

mately.

The law as respects distance is proved in a somewhat simi-

lar way. The repulsions at two different distances are meas-

ured in terms of the torsion of the wire, the charges on the

two balls remaining the same. The same corrections must be

introduced as in the former case.

189. Distribution.—The law of electrical force has been

stated in terms of the charges of two bodies. We may, how-
ever, consider electricity as a quantity which has an existence

independent of matter and which is distributed in space. The
fact cited in § 187 (4) shows that this distribution must be

looked on as being on the surfaces of conductors and not on

their interiors. If we define surface density of electrification
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at any point on the surface of a charged conductor as the

limit of the ratio of the quantity of electricity on an element

in the surface at that point to the area of the element as that

area approaches zero, we may measure quantities of electricity

in terms of surface density. The surface density of electricity

is usually designated by u.

If the law of electrical force hold true not only for charges

on bodies but also for quantities of electricity on the surface

.

elements of a conductor, it is evident, from the fact that within

an electrified conductor there is no electrical force, that its

surface density of electrification must be proportional at every

point on its surface to the thickness at that point of a shell of

matter which is so distributed on that surface that there is no

force at any point enclosed by the surface. The distribution

on a charged sphere may, from symmetry, be assumed uniform.

The fact that there is no electrical force within a charged sphere

is then, from § 29 (i), consistent with the law of electrical force

which has been given ; and since the means of detecting elec-

trical force, if there were any, within a charged conductor are

very delicate, this fact affords a strong corroborative proof of

the law-

The determination of the distribution of electricity on irreg-

ularly shaped conductors is in general beyond our power. If •

we consider, however, a conductor in the form of an elongated

egg, it can be readily seen that, in order that there may be no

electrical force within it, the surface density at the pointed end

must be greater than that anywhere else on its surface. In

general, the surface density at points on a conducting surface

depends upon the. curvature of the surface, being greater where

the curvature is greater. Thus, if the conductor be a long rod

terminating in a point, the surface density at the pointed end

is much greater than that anywhere else on the rod.

190. Unit Charge.—The law of electrical force enables us

to define a unit charge, based upon the fundamental mechanical

units.
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Let there be two equal and similar positive charges concen-

trated at points unit distance apart in air, such that the repul-

sion between them equals the unit of force. Then each of the

charges is a unit cliarge, or a unit quantity of electricity.
.
With

this definition of unit charge, it may be said that the force be-

tween two charges is not merely proportional to, but equals,

the product of the charges divided by the square of the dis-

tance between them. The factor k in the expression for the

force between two charges becomes unity, and the dimensions

of —r^ are those of a force. If the charges be equal, we have

^
' MLT-\m

Hence [<2] = M^I}T
~

' are the dimensions of the charge. This

equation gives the charge in absolute mechanical units, and

by means of it all other electrical quantities may be expressed

in absolute units. It is at the basis of the electrostatic systern

of electrical measurements.

The practical unit of charge or quantity is called the cou-

lomb. It is the quantity of electricity transferred during one

second by a current of one ampere (§ 218).

191. Hlectrical Potential.—The electrical forces have a po-

tential similar to that discussed in § 28. The unit quantity of

positive electricity is taken as the test unit. Since [§ 187 (4)]

the potential at every point of a charged conductor is the

same, the surface of the conductor is an equipotential surface.

The potential of this surface is often called the potential of the

conductor. A conductor joined to ground is at the potential

of the earth. It will be shown (§ 195) that the potential of

the earth is not appreciably modified when a charged conduc-

tor is joined to groun,d. All conductors, moreover, however

they may afterwards be charged, are when uncharged at the
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potential of the earth. For these reasons it is usual to take

the potential of the earth as the fixed potential or zero from

)vhich to reckon the potentials of electrified bodies. The po-

tential of a freely electrified conductor and of the region about

it is thus positive when the charge of the conductor is positive,

and negative when it is negative. A conductor joined to

ground is at zero potential.

The difference of potential between two points is equal to

the work done in carrying a unit quantity of electricity from

one point to another. We then have the equation QiVi — V)

= work.
I
Hence follows the dimensional equation [F^ — F] =

—r-5 = M^I}T~^, the dimensions of difference of poten-
M^L^T - ^ '

tial in electrostatic units.

If any distribution of a charge exist on a conductor, which is

such that the potential at all points in the conductor is not the

same, it is unstable, and a rearrangement goes on until the po-

tential becomes everywhere the same. The process of rear-

rangement is said to consist in a flow of electricity from points

of highet to points of lower potential.

On this property of electricity depends the fact that a

closed conducting surface completely screens bodies within it

from the action of external electrical forces. For, whatever

changes in potential occur- in the region outside the closed con-

ductor, a redistribution will take place in it such as to make the

potential of every point within it the same. Electrical force

depends on the space rate of change of potential, and not on its

absolute value. Hence the changes without the closed conductor

will have no effect on bodies within it. Further, any electrical

operations whatever within the closed conductor will not change

the potential of points outside it. For, whatever operations

go on, equal amounts of positive and negative electricity always

exist within the conductor, and hence the potential of the con-

ductor remains unaltered. Hence electrical experiments per-
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formed "within a closed room yield results which are as valid as

if the experiments were performed in free space.

The advantage gained by the use of the idea of potential

in discussions of electrical phenomena may be illustrated by a

statement of the process of charging a conductor by induction

described in § 187 (3). To fix our ideas, let us suppose that

the field of force is due to a positively electrified sphere, and

that the body to be charged is a long cylinder. When this

cylinder, previously in contact with the earth and therefore at

zero potential, is brought end on to a point near the sphere, it

is in a region of positive potential, and is itself at a positive

potential. If we consider the original potentials at the points

in the region now occupied by the cylinder, it is easily seen

that the potential of points nearer the sphere was higher than

that of those more remote. When the cylinder is brought into

the field, therefore, the portion nearer the sphere is temporarily

'

raised to a higher potential than the portion more remote.

The difference of potential between these portions is annulled

by a flow of electricity from the points of higher potential to

those of lower potential at a rate depending on the cohductiv-

ity of the cylinder. The end of the cylinder nearer the sphere

is negatively charged, the end more remote is positively

charged, and the two charged portions are separated by a line

on the surface, called the neutral line, on which there is no

charge.

If the cylinder be now joined to ground, a flow of electricity

takes place through the ground connection, and it is brought

to zero potential. The potential of the cylinder is therefore

everywhere lower than the original potentials of the points in

the region which it occupies. This necessitates a negative charge

distributed over the whole cylinder. In other words, the earth

and the cylinder may be considered as forming one conductor'

charged by induction, in which the neutral line is not within

the cylinder.
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If the ground connection be broken the electrical relations

are not disturbed. If the cylinder be now removed to a region

of lower potential against the attraction of the sphere, work

will be done against electrical forces, which reappears as electri-

cal energy. The poteritial of the cylinder is lowered, and, if it

be again connected with the earth, work will be done by a flow

of electricity to it.

The fact that there is no electrical force within a closed

electrified conductor of any shape permits some extensions of

the theorems of § 29.

Some small portion of the surface of any electrified conduc-

tor may be considered a plane relatively to a point situated

just outside it. Represent the surface density of electricity on

that plane by cr. It was proved (§ 29) that the force due to

such a plane is 2n(j, if we substitute c for the corresponding

factor d. Now, just inside the conductor the force is zero.

This results from the equilibrium of the force due to the plane

portion and that due to the rest of the conductor. The force

due to the rest of the conductor is therefore 2itcT. At a point

just putside the conductor these two forces act in the same

direction. Hence the total force due to the conductor at a

point just outside it is the sum of the two forces, or \n(7.

From the preceding proposition follows at once a deduction

as to the pressure outwards on the surface of an electrified

conductor due to the repulsion of the various parts of the

chat-ge for one another. Select any small portion of the sur-

face of the electrified conductor of area a. The force on unit

quantity acting outward from the conductor at a point in- that

area due to the charge of the rest of the conductor is 2;ro-. This

force acts on every uiiit of charge on the area!. The force on

the area acting outwards is then 2na&\ or the pressure at a

point in the area referred to unit of area is 2wcr'. This quan-

tity is often called the electric pressure,

192. Capacity.—The electrical capacity of a conductor is

defined to be the charge which the conductor must receive to



256 ELEMENTARY PHYSICS. [192

raise it from zero to unit potential^ while all other conductors

in the field are kept at zero potential. This charge varies for

any one conductor in a way which cannot be always definitely

determined, depending upon the medium in which the con-

ductor is immersed and the position of other conductors in

the field. When the charged conductor is in very close prox-

imity to another conductor which is kept at zero potential, the

amount of charge needed to raise it to unit potential is very

great as compared with that required when the other conduc-

tor is more remote. Such an arrangement is called a condenser.

If the charge on a conductor be increased, the increase in po-

tential is directly as that of the charge; Hence the capacity

C is given by dividing any given charge on a conductor by the

potential of that conductor, or

' O
c=f. (78)

The practical unit of capacity is the farad, which is the ca-

pacity of a conductor, the charge ort which is one coulomb

(§ 190) when its potential is one volt (§ 228). This unit is too

great for convenient use. Instead of it a microfarad, or the

one-millionth part of a farad, is usually employed.

This equation gives the dimensions of capacity. Measured
in electrostatic units, they are

Capacity, therefore, is of the dimensions of a length.

In the theory of Faraday, which has been adopted and de-

veloped by Maxwell, electrification is made to consist in an

arrangement or displacement of the insulating medium, called

by him the dielectric, surrounding the electrified conductor.
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This displacement, beginning at the surface of the electrified

conductor, continues throughout the dielectric until it termi-

nates at the surfaces of other conductors. The electrification

of the charged conductor is the manifestation of this displace-

ment at one face of the dielectric, that of the surrounding con-

ductors the manifestation of the displacement on the other

face. The one charge cannot exist without an equal and op-

posite charge on surrounding conductors, as was experiment-

ally proved by Faraday's experiment already described in

§ 187 (3). It is therefore necessary, in considering the capacity

oi any conductor, to take account of the medium in which it

is immersed, and of the arrangement of surrounding conductors.

193. Specific Inductive Capacity.—The fact that the

capacity of a condenser of given dimensions depends upon the

medium used as the dielectric was first discovered by Caven-

dish, and afterwards rediscovered by Faraday. The property

of the medium upon which this fact depends is called its

specific inductive capacity. The specific inductive capacity of

.

vacuum is taken as the standard. If Q represent the charge

required to raise a condenser in which the dielectric is vacuum
to a potential V, then if another dielectric be substituted for

vacuum, it is found that a different cTiarge Qi is required to

raise the potential to V. The ratio -- = ^ is the specific in-

ductive capacity. Since C^ = -W and C=^ are the capacities

of the condenser with the two dielectrics, it follows that

C; = CK, (79)

where C is the capacity with vacuum as the dielectric. The
specific inductive capacity K is always greater than unity.

Some dielectrics, such as glass and hard rubber, have a high

17
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specific inductive capacity, and at the same time are capable

of resisting the strain put upon them by the electric displace-

ment to a much greater extent than such dielectrics as air.

They are therefore used as dielectrics in the construction of

condensers.

194. Condensers.—The simplest condenser, one which ad-

mits of the direct calculation of its capacity, and from which

the capacities of many other condensers

may be approximately calculated or in-

ferred, consists of a conducting sphere

surrounded by another hollow concentric

conducting sphere which is kept always

at zero potential by a ground connection.

For convenience we assume the specific

Fig. 58. inductive capacity of the dielectric sepa-

rating the spheres to be unity. Let the radius of the small

sphere (Fig. 58) be denoted by R, that of the inner spherical

surface of the larger one by R^ ; let a charge Q be given to the

inner sphere by means of a conducting wire passing through

an opening in the outer sphere, which may be so small as to

be negligible. This charge Q will induce on the outer sphere

an equal and opposite charge, — Q. Since the distribution on
the surface of the spheres may be aWumed uniform, the poten-

tial at the centre of the two spheres, due to the charge on the

inner one, is -„-, and the potential due to the charge of the

outer sphere is — ^. Hence the actual potential V at the

centre, due to both charges, is

R R-'^K RR, I'
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Hence the capacity is

^ Q RR

In order to find the effect of a variation of the value of R,

divide numerator and denominator by R, and write

c= ^
R'

'-R,

Now, if R, be greater than R by an infinitesimal, the fraction

R
"H" is less than unity by an infinitesimal, and the capacity of
«/

the accumulator is infinitely great. It becomes infinitely small

if R be diminished without limit. The presence of any finite

charge at a point would require an infinite potential at that

point, which is of course impossible. The existence of finite

charges concentrated at points, which we have assumed some-

times in order to more conveniently state certain laws, is

therefore purely' imaginary. If electricity is distributed in

space, it is distributed like a fluid, a finite quantity of which

never exists at a point.

If R^ increase without limit, C becomes more and more
nearly equal to R. Suppose the inner sphere to be surrounded

not by the outer sphere but by conductors disposed at unequal

distances, the nearest of which is still at a distance R^ so great
TO

that ^ may be neglected in comparison with unity. Then if

the nearest conductor were a portion of a sphere of radius Ri
concentric with the inner sphere, the capacity of the inner

sphere would be approximately R. And this capacity is evi-

dently not less than that which would' be due to any arrange-
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ment of conductors at distances more remote than R^. There-

fore the capacity of a sphere removed from other conductors

by distances very great in comparison -with the radius of the

sphere is equal to its.. radius i?. -This value R is often called

the capacity of 2, freely electrified sphere. Strictly speaking, a

freely ekctrified conductor cannot exist ; the term is, however,

a convenient one to represent a conductor remote frorp all

other conductors.

A common form of condenser consists of two flat conduct-

ing disks of equal area; placed parallel and opposite one

another. The capacity of such a condenser may be calculated

from the capacity of the spherical condenser already discusged.

Let d represeht the distance R^ — i? between the two-spherical

surfaces. Let A and A^ represent the area, of the surfaces of

the two spheres of radius R and R,. Then we have

K.= — and ie; =—'.

The capacity of the spherical condenser may then be written

\fAA,

47td

If R^ and R increase indefinitely, in such a manner that R^ — R
always equals d, in the limit the surfaces become plane and A

becomes equal to A^. The capacity therefore equals —-5.

Since the charge is uniformly distributed, the capacity of any
portion of the surface cut out of the sphere is proportional to

the area .S of that surface, or '
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This value is obtained on the assumption that the distribution

over the whole disk is uniform, and the irregular distribution

at the edges of the disk is neglected. It is therefore only an

approximation to the true capacity of such a condenser.

The so-called Leyden jar is the most usual form of con-

denser in practical use. It is a glass jar coated with tinfoil

within and without, up to a short distance from the opening.

'

Through the stopper of the jar is passed a metallic rod fur-

nished with a knob on the outside and in conducting contact

with the inner coating of the jar. To charge the jar, the outer

coating is put in conducting contact with the ground, and the

knob brought in contact with some source of electrification.

It is discharged when the two coatings are brought in conduct-

ing contact. When the wall of the jar is very thin in compari-

son with the diameter and with the height of the tinfoil coat-

ing, the capacity of the jar may be inferred from the preceding

propositions. It is approximately proportional directly to the

coated surface, to the specific inductive capacity of the glass,

and inversely tt) the thickness of the wall.

195, Systems of Conductors.—If the capacities and poten-

tials of two or more conductors be known, the potential of the

system formed by joining them together by conductors is easily

found. It is assumed that the connecting conductors are fine

wires, the capacities of which may be neglected. Then the

charges of the respective bodies may be represented by Cj^^,

CjK, . . . C„V„, and the capacity of the system by the sum

C^ _|_ C", + • • • ^»- Hence F„ the potential after connections

have been made, is

In the case of two freely electrified spheres joined up
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together by a fine wire, we have C, = 7?„ and C, = R^, where R^

and R^ represent the radii of the spheres. Hence we have

„_ R.V.^R.V.
*"- R^^R, '

When /?, is very great compared with ^3, we obtain '

p
Unless Fj is so great that the term „" f^2 becomes appreci-

able, the potential of the system is appreciably equal to the

original potential of the larger sphere. Manifestly the same
result follows if R^ represent the capacity of any conductor

relatively small compared with the capacity of the large sphere.

This proposition justifies the adoption of the potential of the

earth as the standard or zero potential.

196. Energy of Charge.—In order to find the work done
in charging a conducting body to a given potential, we will

consider all surrounding bodies as being kept by ground con-

nections at zero potential. Then if an infinitesimal charge be

given to the body, previously uncharged and at zero potential,

the work done is that which would be done if the charge were
brought from infinity to a point of potential o ; that is, the work
= o. The charge q raises the potential of the body so that it

q
becomes v^ = j\. If then another infinitesimal charge q be

given to the body, the work done is equal to qv^ or |v, and the

potential is raised to v^ ~ ~, So also the work done when
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the («-f-«)th charge is given to the body is qvn, and the

(ft
I

,., * \q
potential becomes ^ T. . The total work done is then

W= ?(2'i+ 2', +...«'«) = 1^(1 + 2+ .. . n)

= ^-^•^ = 10^, (82)

where nq= Q and V— v„. When the charges q are infinitesi-

mal, 2 is equal to the sum of all the charges given to the bbdy.

Hence the work done in raising a body from zero potential to

potential V is. equal to one half the charge multiplied by the

potential of the body.

197. Strain in the Dielectric.—An instructive experiment

illustrating Faraday's theory that the electrification of a con-

ductor is due to an arrangement in the dielectric surrounding

it, may be performed with a jar so constructed that both coat-

ings can be removed from it. If the jar be charged, the coat-

ings removed by insulating handles without discharging the

jar, and examined, they will be found to be almost without

charge. If they be replaced, the jar will be found to be charged

as before. The jar will also be found to be charged if new
coatings similar to those removed be put in their place. This

result shows that the true seat of the charge is in the dielectric.

The experiment is due to Franklin.

That the arrangement in the dielectric is of the nature of a

strain is rendered probable by the fact, first noticed 'by Volta,

that the volume occupied by a Leyden jar increases slightly

when the jar is charged. Similar changes of volume were ob-

served by Quincke in fluid dielectrics as well as in different

solids.

Another proof of the strained condition of dielectrics' is

found in their optical relations. It was discovered by Kerr
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that dielectrics previously homogeneous become ' doubly re-

fracting when subjected to a powerful electrical stress. Max-

well has shown, from the assumptions of his' electromagnetic

theory of light, that the index of refraction of a transparent

dielectric should be proportional to the square root of its

specific inductive capacity. Numerous experiments, among
which those of Boltzmann on gases are the most striking, show

that this predicted relation is very close to the truth.

It has further been shown that the specific inductive capac-

ity of sulphur has different values along its three crystallo-

graphic axes. This is- probably, true also for other crystals.

Some crystals, while being warmed, exhibit on their faces

positive and negative electrifications, which are reversed as

the crystals are cooling. This fact, while as yet unexplained,

is probably due to temporary modifications of molecular ar-

rangement by heat.

If a jar be discharged and allowed to stand for a while, a

second discharge can be obtained from it. By similar treat-

ment several such discharges can be obtained in succession.'

The charge which the jar possesses after the first discharge is

called the residual charge. It does not attain its maximum
immediately, but gradually, after the first discharge. The
attainment of the maximum is hastened by tapping on the

wall of the jar. This phenomenon was ascribed by Faraday to

an absorption of electricity by the dielectric, but this explana-

tion is at variance with Faraday's own theory of electrification.

Maxwell explains it by assuming that want of homogeneity in

the dielectric admits of the production of induced electrifica-

tions at the surfaces of separation between the non-homogene-

ous portions. When the jar is discharged the induced electri-

fications within the dielectric tend to reunite, but, owing to

the want of conductivity in the dielectric, the reunion is

gradual. After a sufficient time has elapsed, the alteration of

the electrical state of the dielectric has proceeded so far as to
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sensibly modify the field outside the dielectric. The residual

charge then appears in the jar.

198. Electroscopes and Electrometers.—An electroscope

is an instrument to detect the existence of a difference of electri-

cal potential. It may also give indications of the amount of

difference. It consists of an arrangement of some light body

or bodies, such as a pith ball suspended by a silk thread, or a

pair of parallel strips of gold-foil, which may be brought' near

or in contact with the body to be tested. The movements of

the light bodies indicate the existence, nature, and to some

extent the amount of the potential difference between the body

tested and surrounding bodies.

An electrometer is an apparatus which gives precise measure-

ments of differences of potential. The most important form

is the absolute or attracted disk electrometer, originally devised

by Harris, and improved by Thomson. The essential portions

of the instrument (Fig. 59) are a large

fiat disk B which can be put in con- c

ducting contact with one of the two '

g

bodies between which the difference of fig. 59.

potential is desired ; a similar disk C, in the centre of which

is cut a circular opening, placed parallel to and-a little distance

above the former one ; a smaller disk A with a diameter a little

less than that of the opening, which can be placed accurately

in the opening and brought plane with the larger disk; and

an arrangement, either a balance arm or a spring of knowh

strength, from which the small disk is suspended, and by

means of which the force acting on the disk when it is plane

with the surface of the larger disk can be measured. The
three disks can be conveniently styled the attracting disk, the

guard ring, and the attracted disk. The position of the at-

tracted disk when it is in the plane of the guard ring is often

called \hs. sightedposition. The guard ring is employed' in order

that the distribution on the attracted disk may be uniform.
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To determine the difference of potential between the at-

tracted and attracting disks, we consider them first as forming

a flat condenser. If we represent by Q the quantity of eleg^

tricity on the attracted disk, hy V and V^ the potentials of the

,

attracted and attracting disks respectively, by d the, distance

between them, and by S the area of the attracted disk, then,

as has been shown in § 194, the capacity of such a condenser is

Q
V,-V~ iptd'

Now from the nature of the condenser, and in consequence of

the regular distribution due to the presence of the guard ring,

we have „ = cr, the surface density on either plate, whence

V — V
cr = —^

—

-j—. The surface density cannot be measured, and

must be eliminated by means of an equation obtained by ob-

servation of the force with which the two disks are attracted.

The plates are never far apart, and the force on a unit charge

due to the charge on the lower one may be always taken in

the space between the plates as equal to 2;ro- (§ 191). Every
unit on the attracted disk is attracted with this force, and the

total attraction, which is measured by means of the balance or

spring, is F= 2ncfS. Substituting this value of <t in the for-

mer equation, we get

V. - V= d\/^-^, (83)

which gives the difference of potential between the two plates >

in terms which are all measurable in absolute units. In Thom-)
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son's form of the electrometer the attracted disk is leept at a.

high constant potential V; the attracting disk is brought to

the potential Vi of one of the two bodies of which the differ-

ence of potential is desired, and the position of the attracting

disk when the attracted disk is in its sighted position is noted.

The attracting disk is then brought to the potential V^ of the

other body, and by a micrometer screw the distance is measured
through which the attracting disk is moved in order to bring

the attracted disk again into its sighted position. This meas-

urement can be made with much greater precision than the

measurement of the distance between the two plates. The
formula is easily deduced from the one already given. In the

first observation we have

ii^ the second,'

F,-r=V^;

K-v=dy^;

whence

1/ — 77- — (A — //NvL-K-V, = {d,-d,)\/^, (84)

and d^ — d^ is the distance measured.

Thomson's quadrant electrometer is an instrument which is

not used for absolute measurement, but being extremely sensi-

tive to minute differences of potential, it enables us to compare

them with each other and with some known standard. The
conistruction of the apparatus can best be understood from
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Fig. 60.

Fig. 60. Of the four metallic quadrants which are mounted
on insulating supports, the two marked P
and the two marked iVare respectively in '

conducting contact by means of wires.

The body C, technically called the needle,'

is a thin sheet of metal, suspended sym-

metrically just above the quadrants by

two parallel silk fibres, forming what is

known as a bifilar suspension. When there

'

is no charge in the apparatus, the axes, of symmetry of the

needle lie above the spaces which separate the quadrants.

To use the apparatus, the needle is maintained at a high,

constant potential, and the two points, the difference of poten-

tial between which is desired, are joined to the pairs of quad-

rants P and N. The needle is deflected from its normal posi-

tion, and the amount of deflection is an indication of the

'

difference of potential between the two pairs of quadrants.

199. Electrical Machines.

—

Electrical machines may be
divided into two classes : those which depend for their opera''

tion upon friction, and those which depend upon induction.

The frictional machine, in one of its forms, consists of a

circular glass plate, mounted so thaf it can be turned about an

axis, and a rubber of leather, coated with a metal amalganiy
'

pressed against it. The rubber is mounted on an insulatirig

support, but, during the operation of the machine, it is usually

joined to ground.^ Diametrically opposite ig placed a row of

metal points, fixed in a metallic support, constituting what is
'

technically called the comb. The comb is usually joined to an

accessory part of the machine presenting an extended metallic

'

surface, called the prime conductor. The prime conductor is

carried on an insulating support.

When the plate is turned, an electrical Reparation is pro-

duced by the friction of the rubber, and the rubbed portion of'

'

the plate is charged positively. When the charged portion of*
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the plate passes before the comb, an electrical separation oc-

curs in the prime conductor due to the inductive action of the

plate, a negative charge passes from the comb to neutralize

the positive charge of the plate, and the prime conductor is

charged positively. Since accessions are received to the charge

of the prime conductor as each portion of the plate passes the

comb, it is evident that the potential of the prime conductor

will continuously rise, until it is the same as that of the plate,

or until a discharge takes place.

The fundamental operations of all induction machines are

presented by the action of the ilectrophorus, an instrument in-

vented by Volta in 177 1. It consists of a plate of sulphur or

rubber, which rests on a metallic plate, and a metallic disk

mounted on an insulating handle. The sulphur is electrified

negatively by friction, and the disk, placed upon it and joined

to ground, is charged positively by induction. When the

ground connection is broken and the disk lifted from the

sulphur, its positive charge becomes available. The process is

precisely similar to that described in §191. It may evidently

be repeated indefinitely, and the electrophorus may be used as

apermanent source of electricity.

It is evident that a charged metallic plate may be substi-

tuted for the sulphur in tlie

construction of an electropho-

rus, provided that the disk be

not brought in contact with it,

but only near it. A plan by
which this is realized, and at

the same time an imperceptible

charge on one plate is made to

develop an indefinite quantity

of electricity of high potential,

is shown in Fig. 61. A^ and
,

Fig. si.

A^ are conducting plates, called inductors. In front of them



270 ELEMENTARY PHYSICS. [199

two disks B^ and B^, called carriers, are mounted on an arm so

as to turn about the axis E. Projecting springs b^ and b^ at

tached to these disks are so fixed as to touch successively the

pins Z>, and Z>„ connected with the plates A^ and A^, and the

pins C"i and C^, insulated from the plates, but joined to the

prime conductors F^ and F^.

Suppose the prime conductors to be in contact and the car-

riers so placed that B^ is between Z?, and C^, and suppose the

plate ^1 to be at a slightly higher potential than the rest of

the machine. The carrier B^ is then charged by induction.

When the carriers are turned in the direction of the arrows, and

the carrier B^ makes contact with the pin C^, it losed a part of

its positive charge and the prime conductors become positively

charged. At the same time the carrier B^ becomes positively

charged. As the carrier B^ passes over the upper part of the

plate A^, the lower part of the plate A^ is charged positively

by induction. This positive charge is neutralized by the nega-

tive charge of the carrier B^, when contact is made at'Z)^. The
plate A^ is then negatively charged. The carrier B^ at its con-

tact at D^ shares its positive charge with the plate A^. The
carriers then return to the positions from which they started,

and the difference of potential between the plates ^4, andyi, is

greater than it was at first. When, after sufficient repetition

of this process, the difference of potential has become suffi-,

ciently great, the prime conductors may be separated, and,

the transfer of electricity between the points F^ and F^ then

takes place through the air. Obviously the number of carriers

may be increased, with a corresponding increase in the rapidity

of action of the machine. This ipiprovement is usually effect-,

ed by attaching disks of tin-foil at equal distances from each

other on one face of a glass wheel, so that, as the wheel re-

volves, they pass the contact points in succession.

Another induction machine, invented by Holtz, differs in

plan from the one just described in that the metallic carriers.
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~^~are replaced by a revolving glass plate, and the two metallic

.'inductor plates, by a fixed glass plate. In the fixed plate are

cut two openings, diametrically opposite. Near these open-

ings, and placed- symmetrically with respect to them, are fixed

upon the back of the plate two paper sectors or armatures,

terminating in points which project into the openings. In

front of the revolving plate and opposite the ends of the arma-

tures nearest the openings are the combs of two prime con-

ductors. Opposite the other ends of the armatures, and also

in front of the revolving wheel, are two other combs joined to-

. gether by a cross-bar.

In order to set this machine in operation, one of the paper

armatures must be charged from some outside source. The
surface of the revolving plate performs the functions of the

carriers in the induction machine already explained. The
armatures take the place of the inductors, and the points in

"^vhich they terminate serve the same purpo'se as the contact

points in connection with the inductors. The explanation of

the action of this machine is, in general, similar to that already

given._ The effect of the combs joined by the cross-bar is

equivalent to joining to ground that portion of the outside,

face of the revolving plate which is passing under them.



CHAPTER III.

THE ELECTRICAL CURRENT.

200. Fundamental Effects of the' Electrical Current.—

In 179 1 Galvani of Bologna published an account of some

experiments made two years before, which opened a new de-

partment of electrical scien,ce. He showed that,, if the lumbaf

nerves of a freshly skinned frog be touched by a strip of metal

and the muscles of the hind leg by a strip of another metal,

,

the leg is violently agitaited when the two pieces of metal are

brought in contact. Similar phenomena had been previously

observed, when sparks were passing from the conductor of an

electrical machine in the vicinity of the frog preparation.

He ascribed the facts observed to a hypothetical animal

electricity or vital principle, and discussed them from the

physiological standpoint ; and thus, although he and his im-

mediate associates pursued his theory with great acuteness,

they did not effect any marked advance along the true direc-

tion. Volta at Pavia followed up Galvani's discovery in a

most masterly way. He showed that, if two different metals,

or, in general, two heterogeneous substances, be brought in

contact, there immediately arises a difference of electrical po-

tential between them. He divided all bodies into two classes.

Those of the first class, comprising all simple bodies and many
others, are so related to one another that, if a closed circuit be

formed of them or any of them, the sum of all the differences

of potential taken around the circuit in one direction is equal

to zero. If a body of the second class be substituted for one of
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the first class, this statement is no longer true. There exists

then in the circuit a preponderating difference' of potential in

one direction. Volta described in 1800 his famous voltaic

battery. He placed in a vessel, containing a solution of salt

in water, plates of copper and zinc separated from one another.

When wires joined to the copper ,and zinc were tested, they

were found . to be at different potentials^ and they could be

used to produce the effects observed by Galvani. The effects

were heightened, and especially the difference of potential be-

tween the two terminal wires Was increased, when sevferal such

cups were used, the copper of one being joined to the zinc of

the next so as to form a series. This arrangement was called

by Volta the galvanic battery, but is now generally known as

the voltaic battery.

Volta observed that, if the terminals of his battery were

joined, the connecting wire became heated.

Soon after Volta sent an account of the invention of his

battery to the Royal Society, Nicholson and Carlisle observed

that, when the terminals of the battery were joined by a

column of acidulated water,- the water was decomposed into

its constituents, hydrogen and oxygen.

In 1820 Oersted made the discovery of the relation be-

tween electricity and magnetism. He showed that a magnet
brought near a wire joining the terminals of a battery is de-

flected, and tends to stand at right angles to the wire. His
discovery was at once followed up by Ampfere, who showed
that, if the wire joining the terminals be so bent on itself as to

form an almost closed circuit, and if the rest of the , circuit be
so disposed as to have no appreciable influence, the magnetic
potential at any point outside the wire will be the same as that

of a uniform magnetic shell.

- In 1834 Peltier showed that, if the terminals of the battery

be joined by wires of two different metals, there is a produc-

tion or an absorption of heat at the point of contact of the
18
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wires, depending upon which of the wires is joined to the ter-

minal the potential of which is positive with respect to the

other. This fact is referred to as the Peltier effect:

201. Electromotive Force.—In 1833 Faraday showed con-

clusively that if a Leyden jar be discharged through a circuit,

it will produce the same thermal, chemical, and magnetic

effects as those just described as produced by t^ie voltaic

battery.

We know that, in the discharge of a jar, a charge of elec-

tricity is transferred from a point at a higher potential to one

at a lower. It is reasonable, therefore, to, suppose the phe-

nomena under consideration to be also due, in some way, to

the transfer of electricity from a higher to a lower potential..

Since these phenomena continue without interruption while'

the circuit is joined up, it is necessary to assume that the vol- i

taic battery maintains a permanent difference of potential.

This power of maintaining a difference of potential is ascribed

to an electromotive force existing in the circuit.

In an actual circuit containing a voltaic battery, if two

points on the circuit outside the battery be tested by an elec-'

trometer, a difference of potential between them will be found.

If the circuit be broken between the two points considered,

'

the difference of potential between them becomes greater.'"

This maximum difference of potential is the sum of finite

differences of potential supposed to be due to molecular inter-

actions at the surfaces of contact of different substances in the

circuit, and is the measure of the electromotive force. An
electromotive force may exist in a circuit in which there are

no differences of potential. These cases will be considered

later. It is sufficient for the present to consider two points

between which a difference of potential is maintained, and

which are connected by conductors of any kind whatever.

The dimensions of electromotive force in the electrostatic

system are those of difference of potential, or \E\ = M^L^T~ ',
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202. Electrostatic Unit of Current.^—Let us denote the

potentials ^t the two points i and 2 in the circuit by V^ and

F",, and let Fj be greater than F, ; then if, in the time t, a quan-

tity of electricity equal to Q passes through a conductor join-

ing those points from potential V^ to potential V^, the amount
of work done by it is QiV^ — V^.

If the conductor be a single homogeneous metal or some
analogous substance, and no motion of the conductor or of

any external magnetic body take place, the whole work done is

expended inheating the conductor. If we suppose the transfer

to be such that equal quantities of heat are developed in equal

times, we may represent the heat produced in the time t by
Ht, if H represent the heat developed in one unit of time. If

all the quantities considered are expressed in terms of the same

fundamental units, we have

<2(f;-fo = ^a or H=^{y,-v^.

The transfer of electricity in the circuit is called the electrical

current, and the rate of transfer — = Z is called the current

strength, or often simply the current. The current, as here de-

fined, is independent of the nature of the conductor, and is the

same for all parts of the circuit. This fact was experimentally

proved by Faraday. Employing this quantity /, we have the

fundamental equation

H = I{V^-V^. (85)

If heat and difference of potential be measured in absolute

units, this equation enables us to determine the absolute utiit

of current. The system of units here used is the electrostatic

system. The dimensions of current strength in the electro-
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static system are obtained from the equation above. We have

[/]=-—= M^L^T-^, the dimensions of current.

203. Ohm's Law-.—In § 187 it was remarked that a body-

is distinguished as a good or a poor conductor by the rate at

which it will equalize the potentials of two electrified conduc-

tors, if it be used to connect them. Manifestly this property,

of the substances forming a circuit, of conducting electricity

rapidly or otherwise, will influence the strength of the current

in the circuit. It was shown on theoretical considerations, in

1827, by Ohm of Berlin, that in a homogeneous conductor which

is kept constant, the current varies directly with the difference

of potential between the terminals. ' If R represent a factor,

constant for each conductor, Ohiiis law is expressed in its sim-

plest form by

IR=V,- V,. (86)

The quantity R is called the resistance of the conductor. If the

difference of potential be maintained constant, and the conduc-

tor be altered in any way that does not introduce an internal

electromotive force, the current will vary with the changes in

the conductor, and there will be a different value of i? with

each change in the conductor. The quantity R is therefore a

function of the nature and materials of the conductor, and

does not depend on the current or the difference of potential

between the ends of the conductor. Since it is the ratio of the

current to the difference of potential, and since we know these

quantities in electrostatic units, we can measure R in electro-

static units. From the dimensions of /and {V^— V^ we may
obtain the dimensions of R. They are in electrostatic units

m = \^—~\ = L-'T.
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To generalize Ohm's law for the whole circuit, let us con.

aider a special circuit which may serve as a

type. It shall consist 'o^ a voltaic cell contain-

ing acidulated water, in which are immersed a

zinc and a platinum plate, pined together by

a platinum wire outside the liquid (Fig. 62).

Consider a point in the liquid just outside the

zinc ; if the potential of a point near it, just

inside the zinc, be Vz, then the potential at the

point considered is Vz-\- Z/L, \i Z/L represent the sudden

change in potential across the surface of separation. The
potential at a point in the liquid just outside the platinum is

Vl^ and t)y the elementary form of Ohm's law, already con-

sidered we have

Fig. 62.

/ = Vz + Z/L - Vl

Rl

In the same way the current in the platinum and platinum

wire is expressed by

/ =

and in the zinc by

/ =

Vl^L/P-
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or

j^Z/L_±L/P±P/Z^
Rl -\- Rp -\- Rz

But the numerator is the sum of all the differences of potential

in the circuit taken in one direction, or the measure of the

electromotive force, and the denominator is the total resistance

of the circuit. It may then be stated more generally as Ohm's

law that in any circuit the current equals the electromotive

force divided by the resistance, or

/=§. (8;)

204. Specific Conductivity and Specific Resistance.

—

If two points be, kept at a constant difference of potential, and

joined by a homogeneous conductor of uniform cross-section,

it is found that the current in the conductor is directly proper-

tional to. its cross-section and inversely as its lengtli. The cur-

rent also depends upon the nature of the conductor. If con-

ductors of similar dimensions, but of different materials, are

used, the current in each is proportional to a quantity called

the specific conductivity of the material. The numerical value

of the current set up in a conducting cube, with edges of unit

length, by unit difference of potential between two opposite

faces, is the measure of the conductivity of the material of the

cube. The reciprocal of this number is the specific resistance

of the material. If p represent the specific resistance of the

conducting material, 5 the cross-section and / the length of a

portion of the conductor of uniform cross-section between two

points at potentials V^ and V^, Ohm's law for this special case

can be presented in the formula
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The specific resistance is not perfectly constant for any one

material, but varies with the temperature. In metals the spe-^

cific resistance increases with rise in temperature ; in liquids

and in carbon it diminishes with rise in temperature. Upon
this fact of change of resistance with temperature is based a

very delicate instrument, called by Langley, its inventor, the

bolometer, for the measurement of the intensity of radiant

energy.

205. Joule's Law. — If we modify the equation H =
I{V^ — V^) by the help of Ohm's law, we obtain

H^PR. (89)

The heat developed in a homogeneous portion of any cir-

cuit is equal to the square of the current in the circuit multi-

pHed by the resistance of that portion. This relation was first

experimentally proved by Joule in 1841, and is known after

his name as Joule's law. It holds true for any homogeneous
circuit or for all parts of a circuit which are homogeneous.
The heat which is sometimes evolved iby chemical action, or by
the Peltier effect, occurs at non-hqmogeneous portions of the
circuit.

206. Counter Electromotive Force in the Circuit.—In

many cases the work done by the current does not appear

wholly as heat developed in accordance with Joule's law.

Besides the production of heat throughout the circuit, work
may be done during the passage of the current, in the decom-
position of chemical compounds, in producing movements of

magnetic bodies or other circuits in which currents are passing,

or in heating junctions of dissimilar substances.

Before discussing these cases separately we will connect

them all by a general law, which will at the same time present

the various methods by which currents can be maintained.

They differ from the simple case in which the work done ap-
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pears wholly as heat throughout the circuit, in that the work

done appears partly as energy available to generate currents in

the circuit. To show this we will use the method given by

Helmholtz and by Thomson. The total energy expended in the

circuit in the time /, which is such that, during it, the current

is. constant, is lEt. It appears partly as heat, which equals

FRt by Joule's law, and partly as other work, which in every

case is proportional to /, and can be set equal to IA, where A
is a factor which varies with the particular work done. Then
we have lEt — I'Rt -\- lA, whence

R .
'

(90)'

It is evident from the equation that E is an electromo-

tive force, and that the original electromotive force of the cir-

cuit has been modified by the fact of work having been done

by the current. In other words, the performance of the work
lA in the time t by the circuit has set up a counter electromo-

tive force -. The separated constituents of the chemical com-

pound, the moved magnet, the heated junction, are all sources

of electromotive force which oppose thait of the original circuit.

If then, in a circuit containing no impressed electromotive

force, or in which £ = o, there be brought an arrangement of

uncombined chemical substances which are capable of com-
bination, or if in its presence a magnet or closed current be
moved, or if a junction of two dissimilar parts of the circuit be

heated, there will be set up an electromotive force -, and a

A

current / = — . Any of these methods may then be used as
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1

-^
1 .

—

.

the means of generating a current. The first gives the ordi-

nary battery currents of Volta, the second the induced cur-

rents discovered by Faraday, and the third the thermo-electric

currents of Seebeck.



CHAPTER IV.

CHEMICAL RELATIOJTS OF THE CURRENT.

207. Electrolysis.—It has been already mentioned that, in

certain cases, the existence of an electrical current in a circuit

is accompanied by the decomposition into their constituents of

chemical compounds forming part of the circuit. This process,

called electrolysis, must now be considered more fully. It is

one of those treated generally in § 206, in which work other

than heating the circuit is done by the current./ That work is

done by the decomposition of a body the constituents of

which, if left to themselves, tend to recombine, is evident from

the fact that, if they be allowed to recombine, the combina-

tion is always attended with the evolution of heat or the ap-

pearance of some other form of energy. The amount of heat

developed, or the energy gained, is, of course, the measure of

the energy lost by combination or necessary to decomposi-

tion.

A free motion of the molecules of a body, associated with

close contiguity, seems to be necessary in order that it may be

decomposed by the current. Only liquids, and solids in solu-

tion or fused, have been electrolysed. Bodies which can be

decomposed were called by Faraday, to whom the nomencla-

ture of this subject is due, electrolytes. The Current is usually

introduced into the electrolyte by solid terminals called elec-

trodes. The one at the higher potential is called the positive

electrode, or anode; the other, the negative electrode, or cathode.

The two constituents into which the electrolyte is decom-

posed are called ions. One of them appears at the anode and
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is called the anion, the other at the cathode and is called the

cation.

For the sake of clearness we will describe some typical

cases of electrolysis. The original observation of the evolution

of gas when the current was passed through a drop of water,

made by Nicholson and Carlisle, was soon modified by Carlisle

in a way which is still generally in use. Two platinum elec-

trodes are immersed in water slightly acidulated with sulphuric

acid, and tubes are arranged above them so that the gases

evolved can be collected separately. When the current is pass-

ing, bubbles of gas appear on the electrodes. When they are

collected and examined, the gas which appears at the anode is

found to be oxygen, and that which appears at the cathpde to

be hydrogen. The quantities evolved are in the proportion to

form water. This appears to be a simple decomposition of

water into its constituents, but it is probable that the acid in

the Tyater is first decomposed, and that the constituents of

water are evolved by a secondary chemical reaction.

An experiment performed by Davy, by which he dis-

covered the elements potassium and sodium, is a good
example of simple electrolysis. He fused caustic potash

in a platinum dish, which was made the anode, and immersed
in the fused mass a platinum wire as cathode. Oxygen was
then evolved at the anode, and the metal potassium was de-

posited on the cathode. This is the type of a large series of

decompositions.

If, in a solution of zinc sulphate, a plate of copper be made
the anode and a plate of zinc the cathode, there will be zinc

deposited on the cathode and copper taken from the anode,

so that, after the process has continued for a time, the solution

will contain a quantity of cupric sulphate. This is a case simi-

lar to the electrolysis of acidulated, water, in which the simple

decomposition of the electrolyte is modified by secondary

chemical reaction.
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If two copper electrodes be immersed in a solution of cu-

pric sulphate, copper will be removed from the anode and de-

posited on the cathode, without any important change occur-

ring in the character or concentration of the electrolyte. This

is an example of the special case in which the secondary reac-

tions in the electrolyte exactly balance the work done by tlie

current in decomposition, so that on the whole no chemical

work is done.

208. Faraday's Laws.—The researches of Faraday in elec-

trolysis developed two laws, which are of great importance in

the theory of chemistry as well as in electricity.

(i) The amount of an electrolyte decomposed is directly pro-

portional to the quantity of electricity which passes through

it; or, the rate at which a body is electrolysed is proportional

to the current strength.

(2) If the same current be passed through different electro-

lytes, the quantity of each ion evolved is proportional to its

chemical equivalent.

If we define an electro-chemical equivalent as the quantity of

any ion which is evolved by unit current in unit time, then,

the two laws may be summed up by saying

:

The number of electro-chemical equivalents evolved in a

given time by the passage of any current through any electro-

lyte is equal to the number of units of electricity which pass

through the electrolyte in the given time.

The electro-chemical equivalents of different ions are pro-

portional to their chemical equivalents. Thus, if zinc sulphate,

cupric sulphate, and argentic chloride be electrolysed by the

same current, zinc is deposited on the cathode in the first case,

copper in the second, and silver in the third. The amounts

by weight deposited are in proportion to the chemical equiva-

lents, 32.6 parts of zinc, 31.7 parts of copper, and 108 parts of

silver.

209. The Voltameter.—These laws were used by Faraday



2io] CHEMICAL RELATIONS OF THE CURRENT. 28$

to establish a method of measuring current by reference to an

arbitrary standard. The method employs a vessel containing

an electrolyte in which suitable electrodes are immersed, so

arranged that the products of electrolysis, if gaseous, can be

collected and measured or, if solid, can be weighed. This ar-

rangement is called a voltameter. If the current strength be

desired, the current must be kept constant in the voltameter

by suitable variation of the resistance in the circuit during the

time in which electrolysis is going on.

Two forms of ivoltameter are in frequent use.

In the first form there is, on the whole, no chemical work

done in the electrolytic process. The system consisting of two

copper electrodes and cupric sulphate as the electrolyte is an

example of such a voltameter. The weight of the copper de-

posited on the cathode measures the currents

The second form depends for its indications on the evolu

tion of gas, the volume of whith is measured. The water vol-

tameter is a type, and is the form especially used. The gases

evolved are either collected together, or t'he hydrogen alone is

collected. The latter is preferable, because oxygen is more
easily absorbed by water than hydrogen and an error is thus

introduced when the oxygen ig measured.

210. Measure of the Counter Electromotive Force of

Decomposition.—In the general formula developed in § 206,

the quantity lA represents the energy expended in the circuit

which does not appear as heat developed in accordance with

Joule's law. In the present case it is the energy expended

during electrolysis in decomposing chemical compounds and
in doing mechanical work. In many cases the mechanical work
done is not appreciable ; but when a liquid like water is decom-

posed into, its constituent gases, work is done by the expan-

sion of the gases from their volume as water to their volume as

gases. ,Let e represent the electro-chemical equivalent of one

of the ions, and d the heat evolved by the combination of a
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unit mass of this ion with aa equivalent mass of the other ion,

in which is included the heat equivalent of the mechanical work

'

done if the state of aggregation change. Then le will represent

the number of electro-chemical equivalents evolved, and led will

represent the energy expended, which appears as chemical sepa-

ration and mechanical work. This is equal to IA ; whence

A = eO.
,
All these quantities are measured in absolute units.

The quantity ed represents the energy required to separate the

quantity e of the ion considered from the equivalent quantity

of the other ion, and to bring both constituents to their normal

condition.

If the electrolytic process go on uniformly for a tirne t, so

that equal quantities of the ion considered are evolved in equal

'

A ed ^^ A
,

•'

times, we have —=— JN ow, — represents the counter-elecr

tromotive force set up in the circuit by electrolysis. Hence

the electromotive force set up irf the electrolytic process may
be measured in terms of heat units ; or, since these heat units

are measures of chemical afifinity, the same relation gives a.

measure of chemical affinity in terms.of electromotive force.

It often is the case that the two ions which appear at the

electrodes are not capable of direct recombination, as has been

tacitly assumed in ihe definition of B. A series of chemical

exchanges is always possible, however, which will restore the

ions as constituents of the electrolyte, and the total heat evolved

for a unit mass of one ion during the process is the quantity B.
,

The theory here presented is abundantly verified by the ex-

periments of Joule. Favre and Silbermann, Wright and others.'

211. Positive and Negative Ions.—Experiment shows

that certain of the bodies which act as ions usually appear at

the cathode, and certain others at the anode. The former are

called electro-positive elements; the latter, electro-negative ele-

ments. Faraday divided all the ions into these two classes,

and thought that every compound capable of electrolysis was
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made up of one electro-positive- and one electro-negative ion.

But the distinction is not absolute. Some ions are electro-

positive in one combination and electro-negative in another.

Berzelius made an attempt to arrange the ions in a series, such

that any one ion should be electro-positive to all those above

it and electro-negative to all those below it. It is questionable

whether a rigorous arrangement of the ions is at the present

time possible.

212. Theory of Electrolysis.—When any attempt is made

to explain the behavior of the ions in the process of electroly-

sis, grave difficulties are met with at once. The foundation

of all the present theories is found m the theory published by

Grotthus in 1805. He considers the constituent ions of a

molecule as oppositely electrified to an equal amount. When
the current passes, owing to the electrical attractions of the

electrodes, the molecules arrange themselves in lines with their

similar ends in'one direction, and then break up. The electro-

negative ion of one molecule moves toward the positive elec-

trode and meets the electro-positive ion of the neighboring

molecule, with which it momentarily unites. At the ends of

the line an electro-negative ion with its charge is freed at the

anode, and an electro-positive ion with its charge at the

cathode. This process is repeated indefinitely so long as the

current passes.

Faraday modified this view, in that he ascribed the^arrange-

ment ox polarization of the molecules, and their disruption, to

the stress in the medium which was the cardinal point in his

electrical theories. Otherwise he held closely to Grotthus'

theory. He showed that the state of polarization existed in

the electrolyte by means .of fine silk threads immersed in it,

These arranged themselves along the lines of electrical stress.

Other phenomena, however, show that Grotthus' hypothesis

can only be treated as a rough mechanical illustration of the

main facts.
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Joule showed that during electrolysis there is a development

of heat at the electrodes, in certain cases, which is not accounted

for by the elementary theory above given. It must depend

upon a more complicated process of electrolysis than the one

we have described.

The results of researches on the so-called wandering of the

ions are also at variance with Grotthus' theory. If the electro-

lysis of a copper salt, in a cell with a copper anode at the bot-

tom, be examined, it will be found that the solu'tiori becomes

more concentrated about the anode and more dilute about the

cathode. These changes can be detected by the color of the

parts of the solution, and substantiated by chemical analysis.

If this result be explained by Grotthus' theory, the explanation

furnishes at the same time a numerical relation between the

ions which have wandered to their respective regions in the

electrolyte which is not in accord with experiment.

Another peculiar phenomenon, known as electrical endos-

mose, may 'also be mentioned in this connection. It is found

that, if the electrolyte be divided into two portions by a porous

diaphragm, there is a transfer of the electrolyte toward the

cathode, so that it stands at a higher level on the side of the

diaphragm nearer the cathode than on the other. This fact

was discovered by Reuss in 1807, and has been investigated

by Wiedemann and Quincke. They found that the amount
of the electrolyte transferred is proportional to the current

strength, and independent of the extent of surface or the thick-

ness of the diaphragm. Quincke has also demonstrated a flow

of the electrolyte toward the cathode in a narrow tube, without

the intervention of a diaphragm. Those electrolytes which are

the poorest conductors show the phenomenon the best. In a

very few cases the motion is towardsi the anode. The material

of which the tube is composed influences the direction of flow.

It has also been shown that solid particles move in the electro-"

lyte, usually towards the anode.
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To explain these phenomena, Quincke has brought forward

a theory of electrolysis which is widely different from Grotthus'

simple hypothesis, but' is too complicated for presentation here.

It is an objection against Grotthus' theory, and indeed

against Thomson's method given in § 210 of connecting chemi-

cal affinity and electromotive force, that, on those theories, it

would require an electromotive force in the circuit 'greater

A • '

than -T-, the counter electromotive force in the electrolytic

cell, to set up a current, and that the current would begin sud-

denly, with a finite value, after this electromotive force was

reached. On the contrary, experiments show that the smallest

electromotive force will set up a current in an electrolyte and

even maintain one constantly, though the current strength may
be extremely small.

This is explained by Clausius by the help of the theory of

the constitution of liquids which is now generally adopted. He
conceives the molecules of the electrolyte to be moving about

with different velocities. He thinks that occasionally the at-

traction between two opposite ions of two neighboring mole-

cules may become greater than that between the constituents

of the molecules. In that case the molecules are broken up,,

the two attracting ions combine to form a new molecule, and

two opposite ions are set free. These may at once combine to

form another new molecule, or they may wander through the

mass until they meet with other ions, with which they can.

unite to again form molecules. He thinks that the electro-

motive force in the circuit, while not great enough to effect a

decomposition of the electrolyte, may yet be sufficient to deter-

mine the direction of motion of these unpaired ions, so that

they move, on the whole, towards their respective electrodes.

Every theory of electrolysis assumes that the transfer of elec-

tricity is, in some way, connected with the transfer of the ions;,

hence on Clausius' theory there will be a current and an evolu-

19
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tion of the ions with any electromotive force in the circuit,

however low. This current would at once cease if the ions

were to collect on the electrodes, and set up a permanent

counter electromotive force; but the same reasoning as has

just been used will show that the liberated ions, if not formed

in such quantities as to collect and pass out of the liquid as

in true electrolysis, will wander back into the liquid again. On
this theory the number of free ions of either kind ought to be

greater near the electrode to which they tend to move.

While Clausius' theory fully accounts for the behavior of

the ions, it does riot explain their relations to the electrical

current. No satisfactory theory of the relations of electricity

to the molecules of matter has as yet been given.

213. Voltaic Cells.—From the discussion given in § 206 it

is obvious that, if an arrangement be made, in a circuit, of sub-

stances capable of uniting chemically and such as would result

from electrolysis, there will, result an electromotive force in

such a sense as to oppose the current which would effect the

electrolysis. If, then, the electrodes of an electrolytic cell in

which this electromotive force exists be joined by a wire, a

current will be set up through the wire in the opposite direc-

tion to the one which would continue the electrolysis, and the

ions at the electrodes will recombine to form the electrolyte.

There is thus formed an independent source of current, the

voltaic cell. The electrode in connection with the electro-nega-

tive ion is called the positive pole, and that in connection with

the electro-positive ion the negative pole.

Thus, if after the electrolysis of water in a voltameter, in

which the gases are collected separately in tubes over platinum

electrodes, the electrodes be joined by a wire, a current will be

set up in it, and the gases will gradually, and at last totally,

disappear, and the current will cease. The current which de-

composes the water is conventionally said to flow through the

liquid from the anode to the cathode, from the electrode above
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1

which oxygen is collected to the electrode above which hydro-

gen is collected. The current existing during the recombina-

tion of the gases flows through the liquid from the hydrogen

electrode to the oxygen electrode, or outside the liquid from

the positive to the negative pole. Such an arrangement as is

here described was devised by Grove, and is called the Grove's

_gas battery.

A combination known as Smee's cell consists of a plate of

zinc and one of platinum, immersed in dilute sulphuric acid.

It is such a cell as would be formed by the complete electrolysis

of a solution of zinc sulphate, if the zinc plate were made the

cathode. When the zinc and platinum plates are joined by a

wire, a current is set up from the platinum to the zinc outside

the liquid, and the zinc , combines with the acid to form zinc

sulphate. The hydrogen thus liberated appears at the platinum

plate, where, since the oxygen which was the electro-negative

ion of the hypothetical electrolysis by which the cell was
formed does not exist there ready to combine with it, it col-

lects in bubbles and passes up through the liquid. The pres-

ence of this hydrogen at once lowers the current from the cell,

for it sets up a counter electromotive force, and also dimin-

ishes the surface of the platinum plate in contact with the

liquid, and thus increases the resistance of the cell. It may be

partially removed by mechanical movements of the plate or by

roughening its surface. The counter electromotive force is

•called the electromotive force of polarization. It occurs soon

after the circuit is joined up in all cells in which only a single,

liquid is used, and very much diminishes the currents which are

-at first produced.

Advantage is taken of secondary chemical reactions to avoid

this electromotive force of polarization. The best example,

and a cell which is of great practical value for its cheapness,

durability, and constancy, is the Daniell's cell. Two liquids

are used, solutions of cupric sulphate and zinc sulphate. They
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are best separated from one another by a porous porcelain

diaphragm. A plate of copper is immersed in the cupric sul-

phate, and a plate of zinc in the zinc sulphate. The copper is.

the positive pole, the zinc the negative pole. When the circuit,

is made and the current passes, zinc is dissolved, the quantity

of zinc sulphate increases and that of the cupric sulphate de-

creases, and copper is deposited on the copper plate. To pre-

vent the destruction of the cell by the consumption of the

cupric sulphate, crystals of the salt are placed in the solution.

The electromotive force of this cell is evidently due to the

loss of energy in the substitution of zinc for copper in the

solution of cupric sulphate. It may be calculated by the for-

mula of §210. The experiments of Kohlrausch give for zinc

in C. G. S. units, e = 0.00341 1, where the system of units em-

ployed is the electromagnetic (§218). Favre and Silbermann

give for B, in the chemical process here involved, 714 gram-

degrees or lesser calories. The mechanical equivalent of one

gram-degree is 41,595,000. Hence we obtain for the electro-

motive force of a Daniell's cell in C. G. S. electromagnetic

units the-value 1.013-10". The value as "found by direct ex-

periment is about I.I • 10° in C. G. S. electromagnetic units.

There are many other forms of cell, which are all valuable

for certain purposes. One of the best known is the Grove s

cell. It has for positive pole a platinum plate, immersed in

strong nitric acid, and for negative pole a zinc plate, immersed,

in dilute sulphuric acid. The two liquids are separated by a

porous porcelain diaphragm. When the current passes,, the-

zinc is dissolved. The hydrogen freed is oxidized by the nitric

acid, which is gradually broken up into other compounds.

The electromotive force of the Grove's cell is very high, being

about 1.95 • 10° C. G. S. electromagnetic units.

The secondary cell of Planti is an example of a cell made
directly by electrolysis, as has been assumed in the preliminary

discussion. The electrodes are both lead plates, and the elec-
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trolyte dilute sulphuric acid. When a current is passed

through the cell, the oxygen evolved on the anode combines

with the lead to form peroxide of lead, which coats the surface

of the electrode. When the cell is inserted in a circuit, a cur-

rent is set up, the peroxide is reduced to a lower oxide, and

the metallic lead of the other plate is oxidized.

The Latimer-Clarke standard cell is of great value as a

standard of electromotive force. As it polarizes at once if a

current pass, through it, it should never be joined up in a

closed circuit. The positive pole consists of pure mercury,

which is covered by a paste made by boiling mercurous sul-

phate in a saturated solution of zinc sulphate. The negative

pole consists of pure zinc resting on the paste. Contact with

the mercury is made by means of a platinum wire. As no

gases are generated, this cell rtay be hermetically sealed against

atmospheric influences. Accoriiing to the measurements of

Rayleigh,the electromotive force of this cell, is very constantly

1.43s • 10' C. G. S. electromagnetic units at 15° Cent.

214. Theories of the Electromotive Force of the

Voltaic Cell.—The plan followed in the preceding discussions

has rendered it unnecessary for us to adopt any theory to ex-

plain the cause of the electromotive force of the voltaic cell.

The different theories which have been advanced may . he

classed under one of two general theories, the contact theory

and the chemical theory. On the contact theory, as advanced

by Volta and supported by Thomson and others, the difference

of potential which exists between two heterogeneous substances

in contact is due to molecular interactions across the surface

of contact, or, as it is commonly stated, is due merely to the

contact. The chemical theory, as advodated by Faraday and
Schonbein, holds that the difference of potential considered

cannot arise unless chemical action or a tendency to chemical

action exist at the surface of contact.

Numerous experiments have shown that the sum of all the
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differences of potential at the surfaces of contact of the various

substances making up any voltaic cell is equal to the electro-

motive force of that cell. This is true even when the cell is

formed solely of liquid elements. On the contact theory this

electromotive force is due merely to the several contacts, while

the chemical actions of the cell begin only when the circuit is

made, and supply the energy for the maintenance of the cur-

rent. The quantity of heat produced at a junction of dis-

similar substances by the passage of a current (§ 233) is such

as to show, however, that the differences of potential thus

measured are not the true differences of potential due to the

contact of the substances tested, but must depend in part

upon the action of the air or other medium by which these

substances are surrounded. The supporters of the chemical

theory point to this fact as evidence that the chemical action

of the medium is concerned in the production of the difference

of potential observed.

On either theory it is clear that the energy maintaining the

current must have its origin in the chemical actions which go

on in the voltaic cell.

215. Capillary Electrometer.—It has been stated that a

difference of potential exists between a metal and a fluid elec-

trolyte in contact with it. There will then exist on the sur-

faces of the metal and the . electrolyte in contact with it such

an electrical distribution as exists in a charged condenser of

which the plates are very near together.

One arrangement by which the effects due to this distribu-

tion may be observed was devised by Lippmann. It consists

of a vertical glass tube, drawn out at its lower end in a capil-

lary tube. The capillary tube dips into dilute sulphuric acid,

which rests on mercury in the bottom of the vessel containing

it. Mercury is poured into the vertical tube until its pressure

is such that the capillary portion of the tube is nearly filled

with it. When the mercury in the vessel is joined with the
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positive pole of a voltaic cell, and that in the tube with the

negative pole, the meniscus in the capillary tube moves up-

ward, in the sense in which it would move if its surface tension

were increased. This movement may best be explained by the

help of the theory of electrolysis given by Clausius (§ 212). So

long as there exists an electromotive force in the circuit, posi-

tive and negative ions will be released on their respective elec-

trodes. If we assume that they are associated with the trans-

fer of electricity in the circuit in such a way that it is trans-

ferred from th,em to the electrodes, such a movement of the

ions would give rise to a modification of the distribution on

the surfaces of contact. In the case now under consideration

the charge on the meniscus is in part neutralized by the charge

transferred with one of the ions.' The true surface tension of

the surface of separation between the mercury and the liquid

is, on
^
this theory, lessened by the presence of the electrical

charge on the surfaces of contact, owing to the interaction of

the parts of the charge in a manner similar to that described in

§ 191. If, therefore, any dirriinution of this charge occur, a

seeming increase of the surface tension will be observed. On
this theory the true surface tension of the surface of separation

is the value observed when the mercury and liquid are at the

same potentials^ and this value is a maximum. The experi-

ments of A. Konig and Helmholtz show that such a maximuni

value exists in a manner consistent with the theory.

The arrangement described can manifestly be used to pro-

duce the effects just discussed only when the electromotive

force introduced into the circuit is less than that required to

cause active decomposition of the electrolyte. If any suitable

electromotive force be introduced into the circuit, the theory

here given assumes that the transfer of the ions goes on until

the diJEferences of potential on the surfaces of contact are such

as to counterbalance the introduced electromotive force. The'

mercury column then comes to rest.
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Lippmann constructed an apparatus similar to the one de-

scribed, with the addition of an arrangement by which pressure

can be applied to force the end of the mercury column in the

capillary tube back to the fixed position which it occupies

when no electromotive force is introduced into the circuit. He
found that when small electromotive forces were introduced,

the pressures required to bring the end of the column back to

the fixed position were proportional to the electromotive

forces. He hence called this apparatus a capillary electrometer.

Lippmann also found that if the area of the surface of

separation between the mercury and the liquid in the capillary

tube were altered by increasing the pressure and driving the

mercury down the tube, a current was set up in a galvanome-

ter inserted in the circuit, in . a sense opposite to that which

would change the area of the 'meniscus back to its original

amount.



CHAPTER V.

MAGNETIC RELATIONS OF THE CURRENT.

2l6. Biot's Law.—Very soon after tlie discovery by Oer-

sted of the fact that a magnet was acted upon by an electrical

^:urrent brought near it, Biot and Savart instituted a series of

-experiments to determine the law of the force between a mag-

net and a current. They suspended a short magnet by a silk

fibre, and so modified the earth's magnetic field near it, by
means of magnets, that the suspended magnet pointed in any

azimuth with equal freedom. A current was then passed

through a long vertical wire near the magnet. It was observed

that the magnet placed itself so that its poles were equally

•distant from the wire. The directions of the north pole and of

the current were related as the motions of rotation and of pro-

pulsion in a right-handed screw. Then the magnet was set in

oscillation, and the times of oscillation determined, when the

-current was at different distances from the magnet, and when

different currents were set up in the wire. From the first ob-

servation it follows that the force exerted between a magnet

pole and a current is normal to the plane passing through the
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acts on the north pole of the magnet ns with a force repre-

sented by na, making any angle with the line nC. It is as-

sumed as probable that the force on a south pole placed at «

would be oppositely directed to na. The angle which the force

sb, acting on the south pole. J, makes with the line sC will

then be jr — 0. Now the magnet is in equilibrium, hence the

moments of the components of these forces at right angles to

the magnet must be equal. The components are respectively

na sin (^ — 0) and sb sin (ip — {n — 0)). The lever arms on

and OS are equal, and it is assumed that, since the poles are at

equal distances from the current, the forces na and sb are

equal ; therefore sin (^ — 0) must equal sin (rp — {n — 0)),,

and this is true only when = —
. The lines of magnetic force

about an infinite straight current are therefore circles, and the

equipotential surfaces determined by these lines are planes,

passing through the current.

From the times of oscillation observed, it was proved that

the force exerted is proportional directly to the strength of

the magnet pole and to the strength of the current, and in-

versely to the distance between the pole and the current. Biot

hence deduced a law for the action of each element of length

of the current upon a magnet pole, which is expressed in the

formula

mi sin ads , ,/=
11

• (91)

In this formula m represents the strength of the magnet pole,

i the current strength measured in electromagnetic units, ds

the element of the current, r the distance , bet-ween that ele-

ment and the magnet pole, and a the angle between r and ds.

It is easy to show that the force exerted by a long straight

current, observed by Biot to be inversely as the distance from.
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the current, is consistent with this law. For siniplicity we will

consider an infinitely long straight current. Let the magnet
pole m be at the point /"(Fig. 64). Let QR be the current

Fig. 64.

element ds, and PO the perpendicular distance between the

pole and the current. Then Biot's law gives for the force ex-

miQR PO
erted by the element QR the expression ^^y^

• -^. In the

limit, as QR becomes indefinitely small, the triangles QRS and

POR become similar. Hence QS equals—-^— , and the ex-

miQS
PR

pression for the force becomes —ppr- If about P, with PO as

radius, we draw the arc OU, the elementary arc a in the limit

QS.PO
equals -, and the projection b of the arc a on the linePR

/'{/equals -5H- Using these values, the expression „ be-

comes -pTy- There will be a similar expression for the force

due to any other element. The total force due to the whole

current will be equal to the constant factor -^Ty. multiplied by
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the sum of all the projections corresponding to b,

for the infinite current, is manifestly 2PU= 2PO.

2mi
total force is -575 ; or, it is inversely as the distance PO be

This sum,

Hence the

PO
tween the pole and the current.

217. Equivalence of a Closed Circuit and a Magnetic

Shell.—The law of the force between a pole and a current,

which has been stated, leads to the conclusion that a very small

closed plane circuit, carrying a current, will act upon a magnet

pole at a distance from it in the same way as a magnetic shell,

of which the edge coincides with the contour of the circuit, and

the strength equals the strength of the current. To show this

we will use a rectangular circuit with indefinitely small sides.

We will place the origin (Fig. 65) at the centre of the rectan- aj

>"-"-!»=

gle, and draw the x axis perpendicular to the plane of the rect-

angle, and the y and z axes parallel with its sides. For con-

venience, we will call the length of the sides parallel to the y
axis 2s, and of those parallel to the z axis 2s'.

We assume that a current of strength i traverses the bound-

ary of the rectangle in a direction related to the positive di-

rection of the X axis, as the motions of rotation and propul-

!

sion are related in a right-handed screw.

If the magnet pole be at the point {xyz), the force on it due
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to one side, 2s, is, as stated in Eq. (90), proportional to the

'length 2j, is inversely as the square of the distance

and is proportional to the sine of the angle between the line join-

ing {xyz^ and the element 2s and the direction of that element.
'

c^" + (^

—

^yy'
This sine is expressed by }^-n

—

T'T~r ~K¥I- The total force^ ' \x -\-y -\- (z — s)f
, , . , mi2s(x' -{-{z — j')')* ^, . ,

; due to the element is then , , ,
~ , . ^r^. This force is

at right angles to the plane passing through the direction of

the element 2s and the perpendicular from {xyz) on the direc-

tion of that element. We shall investigate in turn the compo-

nents along the three axes. That along the x axis is found by
z — s'

multiplying the total forcq by , ,. j _ ,y.y The expression

for the component along the x axis then becomes

2mis{z —s') .

{^-}-f + {^-s')T

We will expand (z — s')' in the denominator, reject the term

/", remembering that the sides are indefinitely small, and write

for brevity ^tr" +y+ 2^" = ^"^ We then have this component

expressed by -r^ 7^- Similar expressions hold for the

components due to each of the other sides, with the difference

that those due to opposite sides must have different signs.

We call those positive which are directed along the positive

direction of x.

We will write the four components, and opposite them,

their expansions in ascending powers of s or s', rejecting all

terms containing the second or higher powers of s.
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2mis(z ^ s') ., ,^. , , ^~
{/' - 2zsy ^ ~ ^^"^^ ~ '^^^^

~
' + 3-f^^ - ;

,
2mzs(z-]-s')

, .,,,., , V

+ (r' + 2^/)t "= + ^^"^^ + -^ )^^~ ' " ^^^'' ~ '^ '

2mis'{y—s) ... ., , \-
(r' - 2j;^

^ ~ 2M«/(7 - j)(r-3+ 3Jj/r-s)
;

,
2mis'{y-\-s)

, ,, , ^, .

*

+ (r' + 2jj)J "" + ^'^"^^ + '^^''
~

'
~ ^'y'' ~ '^

If we write out the sum of these expressions, rejecting all

terms of the dimensions of /, we obtain as the component

along the x axis of the force due to the whole circuit the ex-

/jy' + 3^" 2 \

pression — /^iss'^ ;
,j. The term in parenthesis

3/ + 32''' — 2^" r' — ^x' ^,
can be written 1

= ^—- The factor dss' is
r r

equal to a, the area of the rectangle. The force along the x
axis is then finally

4-^)^^""x? - -^ ' (92)

For the component along the y axis we have to consider

only the forces due to the sides 2s', for the other sides have no .

tendency to move the pole parallel with themselves. The com-

ponents of these forces along j, that one being called positive

which is in the positive direction of y, are 4- 2mzs'-r-„ rr
(r=-2^j)4 ,v

and — 2mis' , ,. .^ . The sum of these components is

4mtss'-^-;- = mta—r. (gza)

,
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Similarly the total component along the z axis is

mta-^. (92^)

Now to compare these forces with those due to a magnetic

shell of the indefinitely small area a and strength/, we use the

result of the discussion in § 182, that the potential of such a

shell at any external point is _/'«?. In that discussion the con-

vention was made that the positive face of the shell was turned

toward the positive direction of the x axis. We then have oa,

the solid angle subtended by the shell as seen from the point

P, equal to

a cos 6 ax x '

= -, = a
r'

~
r" -"(j;»+/+ ^»)r

The potential at the point P is then

X.

^~^\x'^f^^Y

To find the forces along the three axes we must find the rate

of change of this potential with respect to space. To do this

for the X . axis, let x increase by a small increment Ax ; then

the potential will take a small increment A V. We will have

JT ^ AIT x-\-Ax

\{x + Axr^f + z')i'

and as Ax becomes indefinitely small,

V4- AV=ja , , I

—-j-rs.
'

(^ + 2xAx)i
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Expanding this expression, rejecting all terms containing the

second or higher powers of Ax, we obtain

From this we have further

AV .(I 3^
Ax -J'^\i^~ r*>

In the limit, as Ax becomes indefinitely small, this is the rate

of change of potential along the x axis at the point {xyi).

The force along the x axis on a unit magnet pole at the

point \xyz) is this rate of change of potential taken with the

opposite sign. Hence the force on the magnet pole m at that

point is — mja\—i — —^ ). Similarly the forces along the ^ and

z axes can be found to be respectively mja—^ and mja^—r-

If these expressions be compared with the expressions for

the components of force arising from the action of the rect-

angular current, they will be seen to be completely identical,

provided that the unit of current be so selected that the

factors « andy'are equal.

If the current in the circuit be reversed, the components of

force due to it remain the same in amount Isut are opposite in

direction. The direction of current in the circuit which will

render its action completely identical with that of the mag-
netic shell may be readily stated. Let us draw a line through

the magnetic shell, tangent to the lines of force, from the

negative to the positive face, and call its direction the positive

direction of the lines of force. Then the current in the equiv-
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alent circuit is such that its direction is related to the positive

direction of the lines of force as the motions of rotation and
propulsion are related in a right-handed screw.

It may now be shown that a finite circuit of any form

carrying a current i is equivalent to a magnetic shell of uni-

form strength j\ the edge of which coincides with the circuit.

For a finite circuit may be conceived to be made up of an

assemblage of elementary circuits of the kind considered,

lying contiguous to one another in the surface bounded by the

contour of the circuit. Everywhere the currents of one of

these elementary circuits is neutralized by the equal and in-

finitely near currents in the opposite direction of the contigu*

ous circuits, except at the boundary, where all the elementary

currents are in the same direction and are equivalent to the

current in the circuit. This reasoning will be plain at once

from Fig. 66. The forces due to

such a current will then be equal to

the forces due to a magnetic shell

made up of elements which corre-

spond to the elementary circuits.

The systems of lines of force due to Fig. 66.

the shell and the equivalent circuit will be precisely similar in

form and distribution. They will differ, however, in this, that

the line of force joining two contiguous points on opposite

faces of the shell will be interrupted by the shell, while in the

case of the circuit it passes through the circuit as a continuous

line enclosing the current. If a unit positive magnet pole were
placed at a point on the positive face of a magnetic shell, it

would move along a line of force to a point infinitely, near the

one from which it started, but on the opposite or negative face

of the shell, and during the movement it would do an amount
of work expressed by i^nj. This same amount of work would

be done upon it if it were brought back by any path to the

point from which it started, so that the total work done in the
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closed path is zero. If, on the other hand, the pole were mov-

ing under the influence of the circuit equivalent to the mag-

netic shell, it would move, as in the case of the shell, along the

line of force from the positive to the negative face of the

circuit, and in so doing would do work equal to ^ni. But

from the fact that the line of force on which it is moving is

continuous, and that the force in the field is everywhere finite,

it would pass over the infinitesimal distance between the point

on the negative face and the one on the positive face, from

which it started, without doing any finite work. The system

would then have returned to its original condition, and work

equal to ^ni would .have been done. This is expressed by

saying that the potential of a closed current is multiply-valued.

The work done during any movement depends not only on the

position of the initial and final points in the path, as in the

case of the ordinary single-valued gravitational, electrical, and

magnetic potentials, but also on the path traversed by the

moving magnet pole. Every time the path encloses the cur-

rent, work equal to ^ni is done. The work done in moving by

a path which does not enclose the current, from a point where

the solid angle subtended by the circuit 'is w^ to one where it

is CO, is, as in the case of the magnetic shell, equal to iioo^ — 00).

If the path further enclose the current n times, the work done

is /\,nni , so that the total work done, or the total difference of

potential between the two points, is

V,-V= i{Go, -00+ 4nn), (93)

where n may have any value from o to infinity.

The fact that the potential of a current is multiply-valued

is well illustrated by any one of a series of experiments due to

Faraday. If we imagine a wire frame forming three sides of a

rectangle to be mounted on a support so as to turn freely about

one of its sides as a vertical axis, while the free end of the
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opposite side dips in mercury contained in a circular trough of

"which the axis of rotation passes through the centre, and if we
suppose a current to be sent through the axis and the frame,

passing out through the mercury ; then, if a magnet be placed

vertically with its centre on the level of the trough, and with

either pole confronting the frame, the frame will rotate con-

tinuously about the axis.

Other arrangements are made by which more complicated

notations of circuits can be effected. If the circuit be fixed

and the magnet movable, similar arrangements will give rise

to motions of the magnet or to rotations about its own axis.

218. Electromagnetic Unit of Current.—The relation

•which has been discussed between a circuit and the equivalent

"magnetic shell affords a means of defining a unit of current dif-

ferent from that before defined in the electrostatic system.

That current is defined as the unit current, which will set up
the same magnetic field as that due to a magnetic shell of

which the edge coincides with the circuit, and the strength is

unity.

This definition is equivalent to the following one, which is

sometimes given. If the force between a unit magnet pole

and a current flowing in a plane circuit of unit length, every

part of which is at unit distance from the pole, be the unit

force, then the current is the unit current.

The equivalence of the two definitions may be proved as fol-

lows. Conceive a circular plane magnetic shell of strength/to be

set up normal to the x axis, with its centre at the origin. Then at

the centre ;tr = o, and from §217 the component of force along
'PPl'JfT

the X axis due to each element of the shell is numerically-^.

Now divide the circle up into any very great number of circular

rings by striking circles about its centre with radii differing

by the small distance d. The elementary areas making up any

one of these rings are all at the same distance from the centre,



308 ELEMENTARY PHYSICS. [2l5

and the force along the x axis due to the whole circle can be

found by summing the areas of the rings-divided by the cubes

of their respective radii. Select the ring the radius of which

is one half that of the circle, and call that radius /. The radii

of the rings distant nd from this middle one are l-\-nd and

/ — nd, and the areas of these rings are 2nd{J --f- nd^ and

27td{l — nd). The forces due to them are 75-;—^Ca and^ ' {l-{-nd)

ZTtmJd _., . , .fd 2nd'\

jj
-jy- These expressions are equal to 2itmj \j.^

— —tt')

Id 2nd'\
and 27rm/\ji-{-—j^j if we neglect the higher powers of d..

\itmid I
The force due to both rings is —j^— . As there are -7 such

pairs, the force due to the whole shell is —-,—. The force due

to a circuit equivalent to the magnetic shell is —-,—. Since

/= -, where R is the radius of the circle, the force along the

2ni'in
X axis equals —^—

.

If we adopt the second definition of unit current, arid use

Biot's formula for the action of a current on a magnet pole,

the force due to a circular current, made up of current

elements of length s, upon a pole at its centre is ^^55. The

sum of all the elements of the circle is 2nR. Hence the force

on this definition is also —5—

.

K
The unit based upon these definitions is called the electro-

magnetic unit of current. It is fundamental in the construction

of the electromagnetic system of units, in just the same way as

the unit of quantity is fundamental in the electrostatic systen^.
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In practice another unit of current, called the ampere, is used.

It is equal to io~^ C. G. S. electromagnetic units. The dimen-

sions of the electromagnetic unit of current are those of the

strength of a magnetic shell, or [? ] = M^L^ T~^.

219. Lines of Magnetic Force.—It is convenient, in

much of the discussion of the action of currents, to use the

notion of lines of force, and to measure the strength of field,

as explained in § 21, by the number of lines of force. For
example, we may conceive the field about a magnet pole to be

filled with conical tubes of force, of an angular aperture which

is very small, and equal for all the cones, but otherwise entirely

arbitrary. It is commonly assumed that each one of these

cones represents a line of force. Then the soHd angle sub-

tended by any magnetic shell in the field, which is measured

by the number of the cones contained in that solid angle, can

be replaced by the number of lines of force which the bound-

ary of the shell encloses.

If the magnet pole be free to move, it will move from a

point of higher to a point of lower potential ; that is, it will

move in general to a point as near as possible to the negative

face of the shell. If we make the convention that a line of force

passes through a shell in the positive direction when it passes

from the negative to the positive face, we may describe this mo-
tion as one of which the result is, that as ma,ny lines of force as

possible pass through the shell in the positive direction. If the

magnet pole be fixed, and the shell free to move, it follows,

from thd equality of action and reaction, that the shell will

set itself so that as many lines of force as possible will pass

through, it in the positive direction. When the shell is not

perfectly free to move, and in certain other special cases, it is

sometimes convenient to use an equivalent statement, that th6

shell will move so that as few lines of force as possible pass

through it in the negative direction.

These last conclusions are independent- of the particular
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character of the magnetic field in which the shell -is situated^

It may then be stated generally, as a law governing the motions

of magnetic shells or their equivalent electrical circuits in a.

magnetic field, that they tend to move so that as many Hnes.

of force as possible will pass through them in the positive

direction. From the discussion in §217 it may be seen that

the positive direction of a line of force due to a current is fe-

lated to the direction of the current in the circuit as the direc-

tions of propulsion and of rotation in a right-handed screw.

To one looking at the negative face of a magnetic shell, the

current in the equivalent circuit will travel with the hands of

a watch.

If a part only of the closed circuit be free to move, it may
be considered by itself as a magnetic shell, and it will move in

accordance with the same law. We can therefore use this law

to investigate the movements of circuits or parts of circuits due,

to the magnetic field in which they are placed.

220. Mutual Action of Two Currents.—In general, two

plane circuits, if they be free to move, will so place themselves

that the lines of force from the positive face of one will pass

through the other in the positive direction, or through its

negative face. The currents in the two circuits will then have

the same direction. If tTiey be placed so that unlike faces are

opposed, they will move towards one another; if so that similar

faces are opposed, they will move away from one another.

Since in the first case the currents are in the same direction,

and in the second in opposite directions, the law may be stated

in another form : that circuits . carrying currents in the same

direction attract one another ; in opposite directions, repel one

another.

Parts of the circuits, if movable, follow the same law. For

example, consider a circuit in the form of a wire square, free

to turn about a vertical line passing through the centres of two

opposite sides. If now a vertical wire, forming part of another-
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circuit, be brought near one of the vertical sides of the square,

that side will move towards tfie vertical wire, or away from it,

according as the currents in the two wires are in the same or

in' opposite directions. It is clear that the maximum number
of lines of force due to the fixed circuit pass through the mov-

able circuit in the positive direction, when the two parallel

portions carrying currents in the same direction are as near

one another as possible ; and that as few lines of force as pos-

sible pass through the movable circuit in the negative direction,

when the two parallel portions carrying currents in opp'osite

directions are as far from one another as possible.

221. Ampere's Law for the Mutual Action of Currents.

—The laws of the action between electrical currents were first

investigated by Ampere from a different point of view. From
a series of ingenious experiments he deduced a law which ex-

presses the action of a current element on any other current

element. The action of any circuit on any other can be ob-

tained from this law by summing the effects of all the elements.

The complete deduction of the law from the experimental

facts is too complicated to be given, but the experiments

themselves are of great interest.

Ampere's method consisted in submitting a movable circuit

or part of a circuit carrying a current to the action of a fixed

circuit, and so disposing the parts of the fixed

circuit that the forces arising from different
|p

parts exactly annulled one another, so that the

movable circuit did not move when the current

in the fixed circuit was made or broken. In

the first two of his experiments the movable

circuit consisted of a wire frame of the form

shown in Fig. 67. The current passes into the

1 1 1 1

frame by the points a and b, upon which the ^'°' ^''

frame is supported. It is evident that the two halves ol the:

frame tend to face in opposite directions in the earth's mag-
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netic field, so that there is no tendency of the frame as a whole

to face in any one direction ratfier than any other. If a long

straight wire be placed near to one of the extreme vertical sides

of tlje frame and a current be sent through it, that side will

move towards the wire if the currents in it and in the wire be

in the same direction, and will move away from the wire if the

currents be in opposite directions.

If now this wire be doubled on itself, so that near the

frame there are two equal currents occupying practically the

same position, but in opposite directions, then no motion of the

frame can be observed when a current is set up in the wire.

This is Ampfere's first case of equilibrium. It shows that the

forces due to two currents, identical in strength and in posi-

tion, but opposite in direction, are equal and opposite.

If the portion of the wire which is doubled back be not left

straight, but bent into any sinuosities, provided these be small

compared with the distance between the wire and the frame,

still no motion of the; frame occurs when a current is set up in

the wire. This is Ampere's second case of equilibrium. It

' shows that the action of the elements of the curved conductor
is the same as that of their projections on the straight conduc-

tor.

To obtain the third case of equilibrium, a wire, bent in the

arc of a circle, is arranged so that it may turn freely about a

vertical axis passing through the centre of the circle of which
the wire forms a,n arc, and normal to the plane of that circle.

The wire is then free to move only in the circumference of that

circle, or in the direction of its own length. Two vessels filled

with mercury, so that the mercury stands above the level of

their sides, are brought under the wire arc, and raised until

conducting contact is made between the wire and the mercury
in both vessels. A current is then passed through the mova-
ble wire through the mercury. Then if any closed circuit

whatever, or any magnet, be brought near the wire, it is found
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that the wire remains stationary. The deduction from this

observation is that no closed circuit tends to displace an ele-

ment of current in the direction of its length.

In the fourth experiment three circuits are used, which we
may call respectively ^,^, and C. They are alike in form, and

the dimensions of B are mean proportionals to the correspond-

ing dimensions of A and C. B is suspended so as to be free

to move, and A and C are placed on opposite sides of B, so

that the ratio of their distances from B is the same as the

ratio of the dimensions of A to those of B. If then the same

•current be sent through A and C, and any current whatever

through B, it is found that B does not move. The opposing

forces due to the actions of A and C upon B are in equilib-

rium. From this fourth case of equilibrium is deduced the

law that the force between two current elements is inversely

as the square of the distance between them.

Ampfere m^de the assumption that the action between two

current elements is in the line joining them. From the four

cases of equilibrium he then deduced an expression for the

attractiori between two current elements. ' It is

ii' ds ds'
[t, cos e — 3 cos B cos G'\. (94)

In this formula ds and ds' represent the elements of the two

circuits, i and i' the strength of current in those circuits meas-

ured in electro-magnetic units, r the distance between the cur-

rent elements, e the angles made by the two elements with one

another, Q and Q' the angles made by ds and ds' with r ox r

produced, the direction of the two elements being taken in the

sense of their respective currents.

A remarkable result of this equation is that two current

elements of the same circuit in the same straight line repel
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one another. The angle e becomes =; o, and d = 6' =. o\

therefore the force given by the equation is — 5—

_

Since this is negative it expresses a repulsion.

222. Solenoids and Electromagnets. — Ampere also

showed that the action between two small plane circuits is the

same as that between two small magnetic shells, and that a cir-

cuit, or system of circuits, may be constructed which is the

complete equivalent of any magnet. A long bar magnet may
be looked on as made up of a great number of equal and simi-

lar magnetic shells arranged perpendicular to the axis of the

magnet, with their similar faces all in one direction. In order

to produce the equivalent of this arrangement with the circuit;,

a long insulated wire is wound into a close spiral, straight and

of uniform cross-section. The end of the wire is passed back

through the spiral. When the current passes, the action of

each turn of the spiral may be resolved into two parts, that

due to the projection of the spiral on the plane normal to the

axis, and that due to its projection on the axis. This latter

component, for every turn, is neutralized by the current in the

returning wire, and the action of the spiral is reduced to that

of a number of similar plane circuits perpendicular to its axis..

Such an arrangement is called a solenoid. The poles of a sole-

noid of very small cross-section are situated at its ends, and,

it is equivalent to a bar magnet uniformly magnetized.

If a bar of soft iron be introduced into the magnetic field

within a solenoid it will become magnetized by induction..

This combination is called an electromagnet. Since the

strength of the magnetic field varies with the strength of

the current in the solenoid, and with the number of layers of

wire wrapped around the iron core, the magnetization of any

bar of iron whatever may be raised to its maximum by in-

creasing the current or the number of turns of wire.
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223, Ampere's Theory of Magnetism. — Ampere based

upon these facts a famous theory of magnetism which bears

his name. He assumed that around every molecule of iron

there circulates an electrical current, and that to such molecular

currents are due all magnetic phenomena. He made no hy-

pothesis with regard to the origin or the permanency of these

• currents. The theory agrees with Weber's hypothesis that

magnetization consists in an arrangement of magnetic mole-

cules. If we further adopt Thomson's explanation of the dia-

magnetic phenomena (§ 184), we may extend Ampere's theory

to all matter, and assume that an electrical current circulates

about every molecule. In order to account for the different

magnetic susceptibilities of different bodies, it must also be

assumed that these molecular currents are of different intensi-

ties in different kinds of matter.

Ampere's theory, however, admits another explanation of

diamagnetism, which was given by Weber. He assumes that

all diamagnetic molecules are capable of carrying molecular

currents, but that those currents, under ordinary conditions,

do not exist in them. When, however, a diamagnetic body is

moved up to a magnet, an induced current due to the motion

(§ 226) is set up in each molecule, and in such a direction that

the molecules become elementary magnets, with their poles so

directed towards the magnet in the field that there is repulsion

between them. If this theory be true, it ought to be possible,

as suggested by Maxwell, to lessen the intensity of magnetiza-

tion of a body magnetized by induction, by increasing the

strength of the field beyond a certain limit.

224. The Hall Effect.—Hitherto it has been assumed that

when currents interact, it is their conductors alone which are

affected, and that the currents in the conductors are not in

any way altered. Hall has, however, discovered a fact which

seems to show that currents may be displaced in their conduc-

tors. If the two poles of a voltaic battery be joined to two op-
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posite arms of a cross of gold foil mounted on a glass plate, and

if a galvanometer be joined to the other two arms at such

points that no current flows through it, then if a magnet pole

be brought opposite the face of the cross a permanent current

will be indicated by the galvanometer. The same effect ap-

pears in the case of other metals. The direction of the per-

manent current and its amount differ under the same circum-

stances for different metals. The coefiScient which represents

the amount of the Hall effect in any metal is called th6 rota-

tional coefficient of that metal.

Since the rotational coefficients of such metals as have

been tested agree in sign and in relative magnitude with their

thermo-electric powers (§ 235), it is argued by Bidwell, Etting-

hausen, and others that the Hall effect is d^ue to thermo-electric

action.

225. Measurement of Current.—Instruments which are

used to detect the presence of a current, or to measure its

strength by means of the deflection of a magnetic needle, are

commonly called galvanometers.

The simplest form of the galvanometer is- the old instru-

ment called the Schweigger's multiplier. It consists of a flat

spool tipon which an insulated wire is wound a number of

times. The plane of the coils is vertical, and usually also co-

incides with the plane of the magnetic meridian. A magnetic

needle is suspended in the interior of the spool. When a cur-

rent is passed through the wire, the needle is deflected from

the magnetic meridian. Usually, in order to make the indica-

tions of the apparatus more sensitive, a combination of two
needles is used. They are joined rigidly together, so that

when suspended the lower one hangs in the interior of the

spool, and the other in the same plane directly above the

spool. These needles are magnetized so that the positive end

of one is above the rlegative end of the other. If they are of

nearly equal strength, such a combination will have very little
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directive tendency in the earth's magnetic field. It is thercr

fore called an astatic system. When 9, current passes in the

wire, however, the lines of force due to the current form closed

curves psissing through the coil, and both needles tend to turn

in the same direction. Since the earth's field offers almost np
resistance to this tendency, an astatic system will indicate the

presence of very feeble currents. The apparatus h^re described

is no longer used to measure currents, but only to detect their

presence and direction.

The sine galvanometer consists of a circular coil of insulated

wire, set in the vertical plane, in the centre of which is a sup-

port for a magnetic needle. The nee,dle can turn in the hori-

zontal plane. When a current is sent through the coil, the

magnet is deflected. The coil is then turned about the ver-

tical axis, until the magnet lies in the plane of the coils. When
this is the case, the equilibrium of the needle is due to the

equality of the couples set up by the cur-

rent in the coils and by the horizontal com-

ponent of the earth's magnetism. The couple

due to the horizontal component (Fig. 68) is

Hmlsm 0, where H represents the horizon-

tal, component, ml the magnetic moment of

the magnet, and the angle made by the

plane of the coils with the magnetic meridian.

The couple due to the current is, by Biot's

law, proportional to the current. It may then

be set equal to kfnil, where /^ is a constant factor depending

upon the dimensions of the galvanometer. Since these two
couples are equal, we have the equation

Fig. 68.

i = -T" sm 0, (95)

With the same galvanometer, then, different currents are pro-
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portional to the sines of the angles made with the magnetic

meridian by the plane of the coils when the needle lies in that

plane. If i be greater than -r-, the equilibrium supposed in this

explanation cannot occur.

The tangent galvanometer is that form of galvanometer

which is commonly used to measure current in electromagnetic

units. It can best be discussed by considering first the action

of a single circular current of strength i upon a magnet pole

situated at any point on the normal to the plane of the circle

drawn from its centre.

The force due to any current element j (Fig. 6^ upon

the magnet pole m, at the distance /, is, by Biot's law, -j^.

This force tends to move the pole m. at right angles to the

plane containing s and the line joining s and m. If we repre-

^ sent by 6* the angle between the line

k joining s and m and the x axis, the com-

\ ^ . tnis
\ ' 4 ponents of this force become —j^ sin 6

I ^^ •

I
^ s fftZS

•-i-"-f >im along the x axis, and -r-^- cos d normal to

\ I \l
^^^ ^ ^^^^' "^^^ equal element S', dia-

\ / " metrically opposite s, also gives rise to

V_>' mis' . „ ,^""^
Fig. 69.

*^° components, —r^ sm 6 along the x

axis, which is added to the similar component due to s,

mis'
and -j7- cos 6 normal to the x axis, which is opposed to and

annuls the similar component due to s. Every other similar

pair of elements will give rise to two similar components along

the X axis, and will annul one another's action normal to the

X axis. The total force on m will then be a force ajong the

X axis equal to the sum of all the components along that axis.
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fPtZS '2,7tfilt,T

or -S-TT sin B. This equal^ —j^— sin ^, where r is the radius

•of the circle. Since j- = sin 0, this force may be written

2Ttmir' ZTtmir'

{x^ + ry

If the circular coil considered be set vertical in the plane

-of the magnetic meridian, and a short magnetic needle be

,
-.mounted at the point m, so as to turn in the horizontal plane,

the needle will be deflected from the meridian, and will rest in

equilibrium between the force due to the current and that due

to the earth's magnetism. If the needle be so short that the dis-

tance of its poles from the x axis may be neglected, the formula

just obtained will give the force upon its poles. Let / repre-

sent the half length of the needle (Fig. 70), its angle of

deviation from the magnetic meridian, and d the

•distance from its centre to the plane of the coil.

Then ^ — / sin and 'd -\- / sin represent the

•distances of the magnet's poles from the plane of

the coil. The . forces acting on these poles are

then

,(^+(^_/sin0y)* ^""^ (75+(^+/sin0)')r F.c,,p.

H another precisely similar coil be set at the same distance d
from the point of suspension of the needle, on the opposite

side of it, and if the current be sent through it in the same
direction, two other forces equal to those just stated will act

upon the needle, tending to turn it in, the same direction.

There will thus arise two couples with moments equal to

\Tcmit^l cos
, Anmir^l cos

and
(r» + (rf - / sin 07)^ """ (^" + (^+/sin0)=)l'
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both tending to turn the magnet in the same direction. The.

^^^t°'^^r"+(^±/sin0)=)t
are equal to

{f
_|i ^») - 5 q: ^{f + ^?) - « (2^/sin ± /' sin' <t>)

+ V-(^' + fl?")-*^7»sin'0,

if we neglect all terms containing higher powers of / than the-

second. In this expression the upper or the lower signs must

be used throughout. When we add the two moments of couple,

we obtain for the total moment of couple acting on the needle

the expression, after reduction,

Syrmir'/ cos <p

(-f^?'-'^"-^)-

This moment of couple is equal to that due to the horizoiir-

tal intensity of the earth's magnetism, or 2ml{l sin 0. Setting

these expressions equal, we obtain for z, if we neglect powers,

of / higher than the second.

The best form of the tangent galvanometer is so constructed

that d = -
. In this case the second term in the parenthesis.

5« Hr
disappears, a;nd we have i = — . tan 0. The current is pro-

portional to the tangent of the angle of deflection. If the

galvanometer coils contain a number of turns equal in each

n
coil to -, the proportion of the breadth to the depth of the
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coils may be so determined that the current is given by the

equation

« = -> . tan 0. . (c7)

In this equation R is the mean radius of the coil. All the

quantities in this expression for i, except H, are either num-
bers or lengths, and H can be measured in absolute units. The
tangent galvanometer can therefore be used to measure current

in absolute units.

Weber's electro-dynamometer is an instrument with iixed

coils like those of the tangent galvanometer, but with a small

suspended coil substituted for the magnet. The small coil is

usually suspended by the two fine wires through which the

current is introduced into it, and the moment of torsion of this

.so-called bifilar suspension enters into the expression for the

current strength. The same current is sent through the fixed

and the movable coils, and a measurement of its strength can

be obtained in absolute units, as with the tangent galvanome-

ter. By a proper series of experiments, this measurement is

made independent of the horizontal intensity of the earth's

magnetism. When the current is reversed in the instrument,

the couple tending to turn the suspended coil does not change.

If the effects of terrestrial magnetism can be avoided, the

electro-dynamometer can therefore be used to measure rapidly

alternating currents.

226. Induced Currents.—It was shown in § 206 that the

inovement of a magnet in the neighborhood of a closed circuit

will give rise, in general, to an electromotive force in the cir-

cuit, and that the current due to this electromotive force will be

in the direction opposite to that current which, by its action

upon the magndt, would assist the actual motion of the mag-

net. This current is called an induced current. From the
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equivalence between a magnetic shell and an electrical cur-

rent, it is plain that a similar induced current will be produced

in a closed circuit by the movement near it of an electrical

current or ^.ny part of one. Since, the joining up or breaking

the circuit carrying a current is equivalent to bringing up that

same current from an infinite distance, or removing it to an

infinite distance, it is further evident that similar induced

currents will be produced in a closed circuit when a circuit is

made or broken in its presence.

The demonstration of the production of induced currents

in § 206 depends upon the assumption that the path of the

magnet pole is such that work is done upon it by the current

assumed to exist in the circuit. The potential of the' magnet

pole relative to the current is changed.

The change in potential from one point to another in the

magnetic field due to a closed current is (Eq. 93) equal to

{(oa^ — 00 -\- 47in), and the work done on a magnet pole m, in

moving it from one point • to another, is mi{w^ — ta -f- /\.nri).

In the demonstration of § 206 we may substitute »z((»^—03-|-4zr«)

for A, and, provided the change in potential be uniform, we

, .
' • mioo, — w -\- 47tn)

,

obtam at once the expression for the elec-

tromotive force due to the movement of the magnet pole.

If the change in potential be not uniform, we may conceive

the time in which it occurs to be divided into indefinitely small

intervals, during any one of which, t, it may be considered uni-

_, ,,..,, . ' m(00, — Q0-\-A7tTl)
form. Then the limit of the expression ^^^ -,

as t becomes indefinitely small, is the electromotive force

during that interval.

The current strength due to this electromotive force is

. _ m{oo^ — (»+ 4'F«)
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If the induced current be steady, the total quantity of

electricity flowing in the circuit is expressed by

The total quantity of electricity flowing in the circuit de-

pends, therefore, only upon the initial and final positions of

the magnet pole, and the number of times it passes through

the circuit, and not upon its rate of motion. The electro-

motive force due to the movement of the magnet, and conse-

quently the current strength, dependsj on the other hand, upon

the rate at which the potential changes with respect to time,

A more general statement, which will include all cases of

the production of induced currents, may be derived by the use

of the method of discussion given in § 219. The change in

potential of a closed circuit, carrying a current in a magnetic

field, may be measured by the change in the number of lines of

force which pass through it in the positive direction. Any
movement which changes the number of lines of force will set

up in the circuit an electromotive force, and an induced current

in a sense opposite to that current which would by its action

assist the movement* As in the elementary case which has

just been discussed, the total quantity of electricity passing

in the circuit depends only upon the total change in the num-

ber of lines of force passing through the circuit in the positive

direction, but the electromotive force and current strength

depend on the rate of change in the number of lines of force.

It is often convenient, especially when considering the

movement of part of a circuity in a magnetic field, to speak of

the change in the number of lines of force enclosed by the

circuit as the number of lines of force cut by the moving part

of the circuit. The direction of the induced current in the
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moving part of the circuit, if it be supposed to move normal

to the lines of force, is related to the direction of motioq and

to the positive direction of the lines of force cut, in such a

way that the three directions may be represented by the posi-

tive directions of the three co-ordinate axes of x, y, and z,

when the x axis represents the direction of motion, the y axis

the lines of magnetic force, and the z axis the direction of the

induced -current. The positive directions of the three axes is

such that, if we rotate the positivex axis through a right angle

about the z axis, clockwise as seen by one looking along the

positive direction of the z axis, it will coincide with the posi-

tive y axis.

The fact that induced currents are produced in a closed

circuit by a variation in the number of lines of magnetic force

included in it was first shown experimentally by Faraday in

1831. He placed one wire coil, in circuit with a voltaic battery,

inside another which was joined with a sensitive galvanometer.

The first he called the primary, the second the secondary, cir-

cuit. When the battery circuit was made or broken, deflections

of the galvanometer were observed. These were in such a

direction as to indicate a current in the secondary coil, when
the primary circuit was made, in the opposite direction to that

in the primary, and when the primary circuit was broken, in

the same direction as that in the primary. When the positive

pole of a bar magnet was thrust into or withdrawh from the

secondary coil, the galvanometer was deflected. The currents

indicated were related to the direction of motion of the posi-

tive magnet pole', as the directions of rotation and propulsioh

in a left-handed screw. The direction of the induced currents

in these experiments is easily seen to. be in accordance with

the law above stated, that the induced currerlts are always in

the opposite direction to those currents which would, by

their action, assist the motion.

This law of induced currents in its general form was first
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announced by Lenz in 1834, soon after Faraday's discovery of

the production of induced currents. It is known as Lena's law.

The case in which an induced current in the secondary cir-

cuit is set up by making the primary circuit is, as has been said,

an extreme case of the movement of the primary circuit from

an infinite distance into the presence of the secondary. The ex-

periments of Faraday and others show that the total quantity of

electricity induced when the primary circuit is made is exactly

equal and opposite to that induced when the primary circuit is

broken. They also show that the electromotive force induced

in the s,econdary circuit is independent of the materials consti-

tuting either circuit, rfnd is proportional to the current strength

in the primary circuit. These results are consistent with the

formula already deduced for the induced current.

227. Self-induction.—When a current is set up in any cir-

cuit, the different parts of the circuit act on one another in the

relation of primary and secondary circuits. In a long straight

wire, for example, the current which is set up through any

small area in the cross-section of the wire tends to develop an op-

posing electromotive force through every other area in the same

cross-section. The true current will thus be temporarily weak-

ened, and will require a certain time to attain its full strength.

On the other hand, when the circuit is broken, the induced

electromotive force is in the same direction as the electromor

tive force of the circuit. Since the time occupied by the change

of the true current from its full value to zero, when the circuit

is broken, is very small, the induced electromotive force is very

great. The current formed at breaking is called the extra cur-

rent, and gives rise to a spark at the point where the circuit is

broken. The extra Current may be. heightened by anything

which will increase the change in the number of lines of force,

as by winding the wire in a coil and by inserting in the coil a

piece of soft iron. This action of a circuit on itself is called J^^-

induction.
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228. Electromagnetic Unit of Electromotive Force.—If

the circuit, considered in § 226 move from a point where its po-

tential relative to the magnet pole is maa^ to one where it is

moo, provided that the magnetic pole do not pass through the cir-

cuit, and that the movement be so carried out that the induced

current is, constant, the electromotive force of the induced cur-

rent is
—'-- -. If the movement take place m unit time,

and if m {go^ — go) also equal unity, the electromotive force in

the circuit is defined to be imii electromotive force.

The expression m {w^ — w) is equivalent to the change in

the number of lines of force passing through the circuit in the.

positive direction. More generally, then, if a circuit or part of

a circuit so move in a magnetic field that, in unit time, the

number of lines of force passing through the circuit in the posi-

tive direction increase or diminish by unity, at a uniform rate,

the electromotive force induced is unit electromotive force.

The simplest way in which these conditions can be presented

is as follows : Suppose two parallel straight conductors at unit

distance apart, joined at one end by a fixed cross-piece. Sup-

pose the circuit to be completed by a straight cross-piece of unit

length which can slide freely on the two long conductors^, Sup-
pose this system placed in a magnetic field of unit intensity, so

that the lines of force are everywhere perpendicular to the

plane ofthe conductors. Then, if we suppose the sliding piece

to be moved with unit velocity perpendicular to itself along the

parallel conductors, the electromotive force set up in the circuit-

will be the unit electromotive force.

' The unit of electromotive force thus defined is the electro-

magnetic unit. In practice another unit is used, called the volt.

It contains 10' C. G. S. electromagnetic units.

To obtain the dimensions of electromotive force in the elec-

tromagnetic system we need first the dimensions of number of

hnes of force. From the convention adopted by which lines of
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force are used to measure the strength of a magnetic field we have

-=5 = [^] ; whence \n\ = Mi Z* T~^. Since the electromo-

tive force is measured by the rate of change of the number of

lines of force we have [^] = -:= = M^Li T~^.

The definition of electromotive force is consistent, as it

must be, with the equation ie = rate of work, or work divided

by time. This equation is the same as that discussed in § 202,

and holds whichever system of units is adopted. In the deter-

mination of the unit of electromotive force the arrangement

given above is, of course, impracticable. In those experiments

which have been made, the induced electromotive force which

was due to the rotation of a circular coil in a magnetic field

was determined by calculation.

229. Apparatus employing Induced Currents.—The pro-

duction of induced currents by the relative movements of con-

ductors and magnets is taken advantage of in the construction

of pieces of apparatus which are of great importance not only

for laboratory use but in the arts. '

'

The telephonic receiver consists essentially of a bar magnet

around one end of which is carried a coil of fine insulated wire.

In front of this coil is placed a thin plate of soft iron. When
the coils of two such instruments are joined in circuit by

conducting wires, any disturbance of the iron diaphragm in

front of one coil will change the magrietic field near it, and a

current will be set up in the circuit. The strength of the mag-

net in the other instrument will be altered by this current, and

the diaphragm in front of it will move. When the diaphragm

of the first instrument, or transmitter, is set in motion by sound-

waves due to the voice, the induced currents, and the conse-

quent movements of the diaphragm of the second instrument, or

receiver, are such that the words spoken into the one can be

recognized by a listener at the other.
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Other transmitters are generally used, in which the dia-

phragm presses upon a small button of carbon. A current is

passed from a battery through the' diaphragm, the carbon but-

ton, and the rest of the circuit, including the receiver. Whetl

the diaphragm moves, it presses upon the carbon button and

alters the resistance of the circuit at the point of contact. This

change in resistance gives rise to a change in the current; and

the diaphragm of the receiver is moved. The telephone serves

in the laboratory as a most delicate means of detecting a change

of current in a circuit.

The various forms of magneto-eiectrical and dynamo-elec-

trical machines are too numerous and too complicated for de-

scription. In all of them an arrangement of conductors, usually

called the armature, is moved in apoweirful magnetic field, and

a suitable arrangement is made by which the currents thus in-

duced may be led off and utilized in an outside circuit. The
magnetic field is, sometimes established by permanent magn,etSj'

and the machine is called a magneto-machine. In most cases;

however, the circuit containing the armature also contains the

coils of the electromagnets to which the magnetic field is due.

When the armature rotates, a current starts in it, at first due to

the residual magnetism of some part of the machine : this cur-

rent passes through the field magnets and increases the strength

of the magnetic field. This in turn reacts upon the armature,

and the current rapidly increases until it attains a maximum
due to the fact that the magnetic field does not increase pro-

portionally to the current which produces it. Such a machine
\

is called a dynamo-machine.
'

The induction coil, or Ruhmkorff's coil, consists of two cir-

cuits wound on two concentric cylindrical spools. The inner

or primary circuit is made up of a comparatively few layers of

large wire, and the outer, or secondary, of a great number of*

turns of fine wire. Within the primary circuit is a bundle of'

iron wires, which, by its magnetic action, increases thfe electro-
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motive force of the induced current in the secondary coil. Some
device is employed by which the primary circuit can be made.

or broken mechanically. The electromotive force of the induced

current is proportional to the number of windings in the sec-

ondary coil, and as this is very great the electromotive force of

the induced current greatly exceeds that of the primary current.

T,he electromotive force of the induced current set up when the

primary circuit is broken is further heightened by a device pro-

posed by Fizeau. To two points in the primary circuitj one on

either side of the point where the circuit is broken, are joined the

two surfaces of a condenser. When the circuit is broken, the

extra current,, if the condenser be not introduced, forms a long

spark across the gap and so prolongs the fall of the primary cur-

rent to zero. The electromotive force of the induced current is

therefore not so great as it would be if the fall of the primary

current could be made more rapid. When the condenser is in-

troduced, the extra ciirrent is partly spent in charging the con-

denser, the difference of potential between the two sides of the

gap is not so great, the length of the spark and consequently

the time taken by the. primary current to become zero is

lessened, and the electromotive force of the induced current is

proportionally increased.

230. Resistance.—As in the discussion of § 203, we may
here define the ratio of the electromotive force to the current

in any circuit as the resistance in th^at circuit. The electromag-

netic unit of resistance is the resistance of that circuit in which

unit electromotive force gives rise to unit current, when both

these quantities are measured in electromagnetic units. In the

example given in § 228, if we insert a galvanometer in that

part of the circuit occupied by the fixed cross-piece, and

assume tha,t the resistance of every part of the circuit ex-

cept the sliding piece is zero, the resistance of the sliding

piece will be unity when, moving with unit velocity, it

gives rise to unit currertt in the galvanometer. If it move with
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any other velocity v, and still produce unit current in the gaL

vanometer, its resistance will be numerically equal to the veloc-

ity V. For the electromotive force produced by a movement
with that velocity is v, and the ratio of that electromotive force

to unit current is v, which is the,resistance by definition.

A unit of resistance, intended to be the C.G.S. electromagnetic

unit, was determined by a committee of the British Association

by the following method ; A circular coil of wire, in the centre

of which was suspended a small magnetic needle, was mounted
so as to rotate with constant velocity about a vertical diameter.

From the dimensions and velocity of rotation of the coil and

the intensity of the earth's magnetic field, the induced electro-

motive force in the coil was calculated. The current in the

same coil was determined by the deflection of the small magnet.

The ratio of these two quantities gave the resistance of the

coil.

In practice another unit of resistance is used, called the ohn.

It would be the resistance of a sliding piece in the arrangement

before described which would give rise to the C. G. S. unit of cur-

rent if it were to move with a velocity of one billion centi-

metres in a second^ The true ohm th.Ms contains 10 C.G.S. elec-

tromagnetic units. The dimensions of resistance in the elec-

tromagnetic system are [r\= L-^J = LT~\ The dimensions

of resistance are therefore those of a velocity, as might be in-

ferred from the measure of resistance in terms of velocity in

the example given above.

The standard of resistance, usually called the B.A. unit, de-

termined by the committee of the British Association, has a

resistance somewhat less than the true ohm as it is here defined.

In practical work resistances are used which have been compared
with this standard. The Electrical Congress of 1884 defined

the legal ohm to be " the resistance of a column of mercury of

.

one square millimetre section and of 106 centimetres of length
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at the temperance of freezing." The legal ohm contains 1.0112

B. A. units. Boxes containing coils of wire of definite resistance,

so arranged that by different combinations of them any desired

resistance may be introduced into a circuit, are called resistance

boxes or rheostats.

231. Kirchhoff's Laws.—In circuits which are made up of

several parts, forming what may be called a network of con-

ductors, there exist relations between the electromotive forces,

currents, and resistances in the different branches, which have
been stated by Kirchhoff in a way which admits of easy appli-

cation.

Several coiiventions are made with regard to the positive and
negative directions of currents. In considering the currents

meeting at any point, those currents are taken as positive which
come up to the point, and those as negative which move away
from it. In travelling around any closed portion of the net-

work, those currents are taken as positive which are in the di-

rection of motion, and those as negative which are opposite to

the direction of motion. Further, those electromotive forces are

positive which tend to set up a positive current in their respec-

tive branches. With those conventions Kirchhoff 's laws may
be stated as follows :

1. The algebraic sum of aU the currents rneeting at any point

of junction of two or more branches is equal to zero. This first

law is evident, because, after the current has become steady,

there is no accumulation of electricity at the junctions.

2. The suin, taken around any number of branches forming

a closed circuit, ©f the products of the currents in those branches

into their respective resistances is equal to the sum of the elec-

tromotive forces in those branches. This law can easily be
seen to be only a modified statement of Ohm's law, which was
given in § 203.

These laws may be best illustrated by their application in a

form of apparatus known as Wheatstone's bridge, 'The circuit
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of the Wheatstone's bridge is made up of six branches. An
end of any branch meets two,-

and only two, ends of other

branches, as showji in Fig. 71..J

In the branch 6 is a voltaic cell

with an electromotive force .£.

In the branch 5 is a galvan-

ometer which will indicate the

presence of a current in that
^"^' ''

branch. In the other branches

are conductors, the resistances of which may be called respec'

tively r„ r„ r„ r,.

From Kirchhofi's first law the sum of the currents meeting

at the point C is i^ + h+ K = o, and of those meeting at the

point D is i^ + i^ -\- \ = o. By the second law, the sum of the

products zr in the circuit ABC is i^r^ -\- i,r^ -|" h^i, = o, and in

the circuit VBC is i^r^ -)- i^r, + h^^ — o, since there are no

electromotive forces in those circuits. If we so arrange the^

resistances of the branches i, 2, 3, 4 that the galvanometer

shows no deflection, then the current z^ is zero, and these equa-

tions give the relations, t, = — i^, % = — i^, i^r^ = — Vsi

hr^^ —i^r^. Frpm these four equations follows at once a

relation betweein the resistances, expressed in the equation

r^r, = rjr^. (98)

)

If, therefore, we know the value of r, and know the ratio of r^

to r^, we may obtain the value of r^.

This method of comparing resistances by means of the

Wheatstone's bridge is of great importance in practice. By the

use of a form of apparatus known as the British Associationt

bridge the method can be carried to a high degree of accuracy.

In this form of the bridge, the portion vmrked ACB (Fig. 71) is

a straight cylindrical wire, along which the end of the branch CD
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is moved until a point C is found, such that the galvanometer'

shows no deflection. The two portions of the wire between C
and A, and C and B, are then the two cbnductors of which the

resistances are r, and r^, and. these resistances are proportional

to the lengths of those portions (§ 204). The ratio of r^ to r, is

therefore the ratio of the lengths of wire on either side of C,

and only the resistance of r^ need be known in order to obtain

that of 7-4.

It is often convenient in determining the relations of current

and resistance in a network of conductors to use Ohm's" law

(§203), directly, and consider the difference of potential between

the two points on a conductor as equal to the product ir.

When a part of a circuit is made up of several portions which

all meet at two points A and B, the relation between the whole

resistance and that of the separate parts may be obtained easily

in this way. For convenience

in illustration we will sup-

pose the divided circuit (Fig.

72) made up of only three

portions, i, 2, 3, meeting at the

points A and ^, and that no electromotive force exists in those

portions. Then the difference of potential between.^ and^ is

V^—Vb=^ h^i = Vi = ^s^s- We have also by Kirchhoff's first

law — ^^ = ii-{- h+ *s- ^y t^^ combination of these equations

we obtain

-».=(>'.-»:.)(^+^_+^). (99)

The current in the divided circuit equals the difference of

potential between A and B multiplied by the sum of the recip-

rocals of the resistances of the separate portions. If we set this

sum equal to-, and call r the resistance of the divided circuit,
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we may say that the reciprocal of the resistance of a divided

circuit is equal to the sum of the reciprocals of the resistances of

the separate portions of the circuit. When there are only two

portions into which the circuit is divided, one of them is usually

called a shunt, and the circuit a shunt circuit.

An arrangement devised by Clark, called the Clark's poten-

tiometer, used to compare the electromotive forces of voltaic

cdls, depends for its action on the principles here discussed.

It consists of aspiralof evenly drawn wire coiled about a rubber

cylinder, with arrangements by which contact can be made with

it at both ends and at any point along it. Let us call the cells

to be, compared cell i and cell 2, and let the electromotive force

of cell I be the greater. To the two ends of the spiral are joined

the terminals of a circuit which we will call A, containing a con-

stant voltaic battery, of which the electromotive force is greater

than that of either cell i or cell 2, and a set of resistances which

can be varied. To the same points are joined the terminals of

a circuit which we will call B, containing cell i , and a sensitive

galvanometer. The positive poles of the constant battery and

of cell I are joined to the same end of the spiral. The resist-

ance is then modified in circuit A until the galvanometer in

circuit B shows no deflection. The difference of potential

between the ends of the spiral is, therefore, equal and in the

opposite direction to the electromotive force of cell i. The

positive pole of cell 2 is now joined to the end of the spiral to

which the positive poles of the other , circuits are joined, and

with the free end of a circuit C, containing cell 2 and a sensitive

galvanometer, contact is made at different points on the spiral

until the point is found at which, when contact is made, the

galvanometer in C shows no deflection. The difference of poten-

tial between that point and the end of the spiral joined to the

positive poles is equal and opposite to the electromotive force

of cell 2. The electromotive forces of the two cells are then

proportional to the lengths of the wire between the points of



,231] MAGNETIC RELATIONS OF THE CURRENT. 33$

contact of their terminals ; that is, the electromotive force of

cell I is to that of cell 2 as the length of the wire spiral is to

,that portion of its length between the two terminals of cell 2.

For, since the wire is uniform, its resistance is proportional to.

its length, and if we represent the potential of the common
point of contact of the positive poles by V, the potentials of

the points of contact of the two negative poles by V^ and V^,

the current in the spiral by i, and the resistances of the lengths

of wire considered by r, and r„ we have

The rules for joining up sets of voltaic cells in circuits so as

to afccomplish any desired purpose may be disqussed by the

Same riiethod. Let us suppose that there are n cells, each with

an electromotive force e and an internal resistance r, and that

the external resistance of the circuit is s. \i m be a factor of

n, and if we join up the cells with the external resistance so as

to form a divided circuit of m parallel branches,,each containing

— cells, we shall have' for the electromotive force in such am

circuit—, and for the resistance of the circuit s A -• The
m, m

current in the circuit is therefore i = —-—; Two cases
,ms-f-nr

may arise which are common in practice. The resistance s of

the external circuit may be so great th,at, in comparison with

)n''s, tir may be neglected. In that case i is a maximum when
m= 1, that is, when the cells are arranged tandem, or in series,

with their unlike poles connected. On the other hand, if n^s

be very small as compared with nr, it may be neglected, and i

becomes a maximum when m = n, that is, when the cells are
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arranged abreast, or in multiple arc, with their hke poles in con-

tact.

232. Ratio between the Electrostatic and Electromag-

netic Units.—When the dimensions of any electrical quantity

derived from its electrostatic definition are compared with its

dimensions derived from its electromagnetic definition, the

ratio between them is always of the dimensions of some power

of a velocity. The ratio between the electrostatic and electro-

magnetic unit of any electrical quantity is, therefore, of thfe

dimensions of some power of a velocity. If, therefore, this

ratio be obtained for any set of units, the number expressing it

will also express some power of a velocity. This velocity is an

absolute quantity or constant of nature. Whatever changes

are made in the units of length and time, the number express-

ing this velocity in the new units will also express the ratio of

the two sets of electrical units.
, ,

This ratio, which is called ^'jCan be measured in several

ways.

The first method, used by Weber and Kohlrausth, depends

upon the comparison of a quantity of electricity measured in

the two systems. From the dimensions of current in the elec-

tromagnetic system we have the dimensions of quantity

[y] = [«'T] = M^L^. The dimensions of quantity in the electro-

static system are [(2] = M^L^ T~^. The ratio of these dimen-

— = LT'^, or, the number of electrostatic units of

quantity in one electromagnetic unit is the velocity v.

In Weber and Kohlrausch's method the charge of a Leyden

jar was measured in electrostatic units by a determination of

its capacity and the difference of potential between its coatings.

The current produced by its discharge through a galvanometer

was used to measure the same quantity in electromagnetic

measure.

Thomson determined z/ by a comparison of an electromotive

sions is
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force measured in the two systems.. He sent a current through

a coil of very high known resistance, and measured it by an

electro-dynamometer. The electromagnetic difference of po-

tential between the two ends of the resistance coil was then

equal to the product of the current 'by the resistance. The
electrostatic difference of potential between the same two points

was measured by an absolute electrometer. From the dimen-

sional formulas we have

The number of electromagnetic units of electromotive force

in one electrostatic unit is v. The ratio of the numbers express-

ing the electromagnetic and the electrostatic measures of the

electromotive force in Thomson's experiment is therefore the

quantity v. This experiment was carried out by Maxwell in a

different form, in w;hich the electrostatic repulsion of two simi-

larly charged disks was balanced by an electromagnetic attrac-

tion between currents passing through flat coils on the back of

the two disks.

' Other methods, depending on comparisons of currents, of

resistances, and other electrical quantities, have been employed.

The methods described are historically interesting as being the

first ones used. The values of v obtained by them differed

rather widely from one another. Recent determinations, how-

ever, give more consistent results. It is found that v, considered

as a velocity, is- about 3-10'° centimetres in a second. This

velocity agrees very closely with the velocity,of light.

,
The physical significance of this quantity v may be underr

stood from an experiment, of Rowland. The principle of the

experiment is as follows. If we consider an indefinitely ex-

tended plane surface on which the surface density of'electrifica-
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<T

tion is (T, measured in electrostatic units, or - measured in elec-
>. V

tromagnetic units, since the ratio of the electrostatic to the

electromagnetic unit of quantity is v ; and conceive it to move

in its own plane with a velocity x ; the charge moving with it

may be considered as the equivalent of a current in that sur-

face, the strength of which, measured by the quantity of elec-

tricity which crosses a line of unit length, perpendicular to the

direction of movement, in unit time, is— The force due to

such a current on a magnet may be calculated. Conversely, if

the force on the magnet be observed, and the surface density

(T and the velocity x be also measured, the value of v may be

calculated. The probability gf such an action as the one here

described was stated by Maxwell.

The experiment by which Rowland verified Maxwell's view

consisted in rotating a disk cut into numerous sectors, each 'of

which was electrified, under an astatic magnetic needle. Dur-

ing the rotation of the disk, a deflection of the needle was ob-

served, in the same sense as that in which it would have moved
if a current had been flowing about the disk in the direction of

its rotation. From the measured values of the deflecting force,

of the surface density of electrification on the disk, and the

velocity of rotation, Rowland calculated a value of v which lies

between those given by Weber and Maxwell.

It may be seen that, if the velocity x of the moving surface

which we at first considered be equal to v, the equivalent cur-

rent strength in the surface will be tr. If we imagine another

such surface near the one already considered, the repulsion be-

tween them due to their opposite charges is iTt(f for every unit

of surface (§ 198). It can be shown, by a method too extended

to be given here, that the attraction between two currents in

the same siirfaces, of which the strengths in the surface are both

<r, is also expressed by 2.n(f for every unit of surface. Hence
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if the surfaces, so charged that the surface density of their elec-

trification is o", can move with a, velocity in their own planes

equal to v, the repulsion of the charges will exactly counter-

balance the attraction of the currents due to their movement.



CHAPTER VI.

THERMO-ELECTRIC RELATIONS OF THE CURRENT.

233. Thermo-electric Currents.—The heating or cooling

of a junction of two dissimilar metals by the passa,ge of a

current, referred to in § 200 as the Peltier effect, is the reverse

of a phenomenon discovered in 1822-23 by Seebeck. He
found that, when the junction of two dissimilar metals was

heated, a current was sent through any circuit of which they

formed a part. It has since been shown that the same phe-

nomenon appears if the junction of two liquids, or of a liquid

and a metal, be heated. This fact, as has been already shown

in § 206, follows as a ^result of the Peltier phenomenon. If

we designate by P the heat developed at the junction by the

passage of unit current for unit time, we may substitute it for

A
the expression — in the general equation of § 206, and obtain

E — P
I =—-—. The counter electromotive force set up at theR
heated junction is the coefficient P, and is the measure of the

true electromotive force of contact (§ 1214). The contact elec-

tromotive force of Volta does not agree in magnitude and not

always in sign with this electromotive force. From this fact

it is evident that the contact electromotive force of Volta is

at least partially due to the air or other medium in which the

bodies which are tested are placed.

If the electromotive forced and the current / be reversed

E-yp
in the circuit, the junction is cooled and we obtain / = —5-.
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The electromotive force at the junction, therefore, tends to

increase the electromotive force of the circuit. Since this is

opposite to the electromotive force of the circuit in the case

in which the junction is heated, the direction of the electro-

motive force at the junction is the same as that found in the

other case. If, then, there be no electromotive force E in the

P •

circuit, we have / = ^ in case a unit of heat is communi-

cated to the junction and absorbed by it in unit time, and

P
/= —- in case a similar quantity of heat is removed from theR
junction by cooling.

If two strips of dissimilar metals, for example antimony
and bismuth, be placed side by side, and united at one end
of the pair, being everywhere else insulated from one another,

the combination is called a thermo-electric element. If several

such elements be joined in series,

so that their alternate junctions

lie near together and in one plane,

as indicated in Fig. 73, such an

arrangement is called a thermo-

pile. When one face of the pile

is heated, the electromotive force

of the pile is the sum of the elec- fig. 73.

trombtive forces of the several elements. Such an instrument

was used by Melloni, in connection with a delicate galvanom-

eter, in his researches on radiant heat. '

'

When a thermo-electric element is constructed of any two

metals, that metal is said to be thermo-electrieally positive to the

other from which the current flows across the heated junction.

234. Thermo-electric Series.—It was found by the experi-

ments of Seebeck himself, and those of others, that the metals

may be arranged in a series such that any nietal in it is thermo-
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electrically positive to those which follow it, and thermo-elec-

trically negative to those which precede it.

If a circuit be fornied of any two metals in this series, and

one of the junctions be kept at the temperature zero, while, the

other is heated to a fixed temperature, there will be set up an

electromotive force which can be mfeasured. If now the circuit

be broken at either junction, and the gap filled by the intro-

duction of any other metals of the series, then, provided that

the junction which has not been disturbed be kept at the tem-

perature which it previously had, and that the other junctions

in the circuit be all raised to the temperature of the junction

which was broken, there will be the same electromotive force

in the circuit as existed before the introduction of the other

metals of the series. It is manifest, then, that in a circuit made -

up of any metals whatever, at one temperature, no electromo,

five force can be set up by changihg the temperature of the

circuit as a whole.

Thomson showed that it is not necessary for the production

of thermal currents that the circuit should contain two metals ;

:

but that want of homogeneity arising from any strain of one

part of an otherwise homogeneous circuit will also admit of the

production of such currents. It has also been shown that when
a portion of an iron wire is magnetized, and is heated near one

of the poles produced, a thermal current will be set up.

Gumming discovered in 1823 that, if the temperature of one

junction of a circuit of two metals be gradually raised, the cur-

rent produced will increase to a maximum, then decrease until

it becomes zero, after which it is reversed and flows in the

opposite direction. The experiments of Avenarius, Tait, and

Le Roux show that, for almost all metals, the temperature of.

the hot junction at which the maximum current occurs is the

mean between the temperatures of the two junctions at which

the current is reversed.
'

235. Thermo-electric Diagram.—The facts hitherto dis-

covered in relation to thermo-electricity may be collected in a
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general formula or exhibited by means of a thermo-electric dia-

gram.

Let us consider a circuit of two metals, copper and lead, in

which both junctions are at first at the same temperature. We
may assume thai; there is an equal electromotive force of contact

at both junctions acting from lead to copper. If one of the

junctions be gradually heated, a current will be set up, passing

from lead to copper across the hot junction. The heating has

disturbed the equilibrium of electromotive forces, and has in-

creased the electromotive force across the hot junction from

lead to copper. The- rate at which this electromotive force

changes with change in the temperature is called the thermo-

electric power of the two metals. That is, if E represent the

electromotive force, t the temperature, and d the thermo-

E — E

,

electric power, we have —' = 6^, in the limit where ^^ and

t„ are indefinitely near one another. Hence if we lay off on

the axis of abscissas (Fig. 74) an infinitesimal length t^ — t„, and

erect as ordinate the corresponding thermo-electric power &^,

the area of the rectangle formed by the two lines will represent

the electromotive force E^ — E„, due to the change in tempera-

ture. If, beginning at the point t^, we lay off the similar infini-

tesimal length t^ — tl, and erect as ordinate the thermo-electric

power 6,, we shall obtain another rectangle representing the-

electromotive force E, — E^. So for any temperature changes

the total area of the figure

bounded by the axis of tem-

peratures, by the ordinates

representing the thermo-elec-

tric powers at the temper-

atures t^ and tx, and by the

curve AA ' passing through

the summits of the rectangles

so obtained, will represent the electromotive force due to the

heating of the junction from r„ to tx.

Fjg. 74.
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S It was found by Tait and Le Roux that the thermo-electric

power, referred to lead as a standard, of all metals but iron and

nickel, is proportional to the rise in temperature. The curve

AA' is therefore for those metals a straight line. For iron and

nickel the curve is not straight.

For another metal in comparison with lead, the line BB' , cor-

responding to the line AA' for copper, may have a different

direction. From what has been said about the possibility of

arranging the metals in a thermo-electric series, it is evident

that the thermo-electric power between copper and the other

metal is the difference of their thermo-electric powers refetred

to lead, and that the electromotive force at the junction of the

two metals, due to a rise of temperature from t^\.o t„ is repre-

sented by the area of the figure contained by the two terminal

ordLnates and the two lines AA' and BB' . The thermo-elec-

tric power is reckoned positive when the current sets from lead

to copper across the hot junction. In the diagram the ther-

mo-electric power A'B' is positive, and the electronlotive force

indicated by the area is from copper to the other metal across

the hot junction. At the point where the lines AA' and BB'

intersect, the thermo-electric power for the two metals vanishes.

The temperature at which this occurs is called the neutral

temperature and is designated by tn- When the temperature

t-c lies on the other side of the neutral temperature from ^„, the

thermo-electric power becomes

A' negative, and the electromotive

force due to the risfc in tempera-

ature from t„ to t^ is negative. In

Fig. 75 it is at once seen that

A'B' is negative for-^^, and that

the area NA'B' is also negative.

The electromotive force due to a

rise of temperature from t^ increases ,uotil the temperature of

the hot junction is t^, when it is a maximum, and then de-



235] THERMO-ELECTRIC RELA TIONS OF THE CURRENT. 345

creases. When the area NA'B' becomes equal to the area

ANB,^t total electromotive force is zero; when NA'B' is.

greater than ANB, the electromotive force becomes negative,

and the current is reversed. In ease AA' and BB' are straight

lines it is plain that the temperature t^, at which this reversal

occurs, will be such that the neutral temperature tn is a mean
between t^ and t^-

The same facts can be represented by a general formula.

Thomson fiist pointed out that the fact of thermo-electrical in-

version necessitates the view that the tljiermo-electric power at

a junction is a function of the temperature , of that junction.

Avenarius embodied this idea in a formula, whidh his own re-

searches, and those of Tait, show to be closely in agreement

with experiment. Let us cjall the hot junction i and the cool,

jiunction 2, and set the electromotive force at each junction as

a quadratic function of the absolute temperatures. We have

E, — A + bt, + ct^^ and E^ = A -{- bt^-\- ct^\ where A, b, and'

c are constants. The difference E^ — E„ or the electromotive

force in the circuit, is '

This equation may be put in the form used by Tait, if we

write b = atn and c = . We then have
2

E,-E, = a{t, - Q (t„ - i{t, -f /,)) (ioo)

The electromotive force in the circuit can become zero

when either of these terms equals zero. It has been already

; stated that when /, = i„ or when both junctions are at the

same temperature, there is iio electromotive force in the circuit.
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When \{t^ + 4) equals t„ or when the mean of the tempera-

tures of the hot and cold junctions equals a certain temperature,

constant for each pair of metals, there Vill be also no electro-

motive force in the circuit. This temperature t„ is that which

has already been called the neutral temperature. The formula:

also assigns the value to that tempeteture t^ at which, for fixed

values of t^ and t^, the electromotive force in the circuit is a

maximum. If we represent the difference between t„ and t^ by

X, then /j = ^„ ± X. Using this value in the formula, we ob-

tain E^— E^ = - {{t„ — t^y — x"). This is
,

manifestly a max-

imum when X = o. The electromotive force in a circuit is then,

according to the formula, a maximum when the temperature of :

one junction' is the neutral temperature.

The formula also' shows that the thermo-electric power is

zero when t^ = t„. We may set E^ = A -\- atj^ — ~ t^. Now

if t^ take any small increment At:^, E^ has a corresponding in-

crement zJ£,. Hence we have

E^ -f AE., -A-\- atj^ — ~ t^+ at„ At, — at. At,

,

if we neglect the term containing At,'. From this equation

AE,
we obtain . = at„ — at,, which in the limit, as At, becomes

indefinitely small, is the thermo-electric power at the tempera-

ture ?,. It is positive for values oi J, helow t„; is zero for i?,

= t„, and negative for higher values of t,. That is, if we as-

sume t, = t, lower than t„, and then gradually raise the tem-

perature t, , the thermo-electric power at the heated junction is

at first positive, but continually decreases in numerical value,

until at t, = t„ it becomes zero. At that temperature, then,

the metals are thermo-electrically neutral to one another, and a
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small change in the temperature does not change the electro-

motive force at the junction.

236. The Thomson Effect.—Thomson has shown that, in

certain metals, there must be a reversible thermal effect when
the current passes between two unequally heated parts of the

same metal. Let us suppose a circuit of copper and' iron, of

which one junction is at the neutral temperature, and, the other

below the neutral temperature. The current then sets from

copper to iron across the hot junction. In the hot junction

there is no thermal effect produced, because the metals are at

the neutral temperature. Across the cold junction the current

is flowing from iron to copper, and hence is evolving heat. The
current in the circuit can be made to do work, and since no

other energy is imparted to the circuit this work must be done

at the expense of the heat in the circuit. Since heat is not

absorbed at either junction, it must be absorbed in the unequally

heated parts of the circuit between the junctions.

To show this, Thomson used a conductor the ends of which

were kept at constant temperatures in two coolers, while the

central portion was heated. When a current was passed through

this Conductor, thermometers, placed in contact with exposed

portions of the conductor between the heater and the coolers,

indicated a rise of temperature different according as the cur-

rent was passing frorri hot to cold or from cold to hot. The
heat seems therefore to be carried along by the current, and the

process has accordingly been called the electrical convection of

heat. In copper the heat moves with the current, in iron

against it. In another form of stateinent, it may be said that,

in unequally heated copper, a current from hot to cold heats

the. metal, and from cold to hot cools it, while in iron the

reverse thermal effects occur. The experiments of Le Roux
show that the process of electrical convection of heat cannot be

detected in lead. For this reason, lead is used as the standard

metal in constructing the thermo-electric diagram.



CHAPTER VII.

LUMINOUS EFECTS OF THE CURRENT,

237. The Electric Arc.—If the terminals of an electric

circuit in which is an electromotive force of forty or more volts

be formed of carbon rods, a brilliant and permanent luminous

arc will appear between the ends of the rods if they be touched

together and then withdrawn a short distance from each

other. The temperature of the arc is so high that the most

refractory substances melt or are dissipated when placed in it.

The carbon forming the positive terminal is hotter than the

other. Both the carbons are gradually oxidized, the loss of the

positive terminal being about twice as great as that of the nega-

tive. The arc is, however, not due to combustion, since it can

be formed in a vacuum.

The current passing in the arc is, in ordinary cases; not

greater than ten amperes, while the measurements of the resist-

ance of the arc show that it is altogether too smalL to account

for this current when the original electromotive force, is taken

into account. This fact has been explained by Edlund and

others on the hypothesis that there is a counter electromotive

force set up in the arc, which diminishes the effective electro-

motive force of the circuit. The measurements of Lang show
that this counter electromotive force in an ar(j: formed between

carbon points is about thirty-six volts, and in one formed, be-

tween metal points about twenty-three volts.

238. The Spark, Brush, and Glow Discharges.—When
a conductor is charged to a high potential and brought near an-

other conductor which is joined to ground, a spark or a series
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of Sparks will pass from one to the other. This phenomenon

and others associated with it are most readily studied by the

use of an electrical machine or an induction coil, between the

electrodes of which a great difference of potential can be easily

produced. If the spark be examined with the spectroscope, its

spectrum is found to be characterized by lines which are due to

the metals composing the electrodes, and to the medium between

them.

The passage of the spark through air or any dielectric is

attended with a sharp report, and i£ the dielectric be solid, it

is perforated or ruptured. If the electrodes be separated by a

considerable distance, the path of the spark is usually a zigzag

one. It is probable that this is due to irregularities in the

dielectric, due to the presence of dust partiqles.

With proper adjustment of the electrodes, the discharge

may sometimes be made to take the form of a long brush spring-

ing from the positive electrode, with a single trunk which

branches and betomes invisible before reaching the negative

electrode. Accompanying this is usually a number of small and

irregular brushes starting from the negative electrode.

Another form of discharge consists of a pale luminous glow

covering part of the surface of one or both electrodes. If a

small conducting body, be interposed between the electrodes

when the glow is established, a portion of the glow will be cut

off, marking out a region on the electrode which is the projec-

tion of the intervening conductor by the jiines of electrical

force. This phenomenon is called the electrical shadow.

The difference of potential required to set up a spark be-

tween two slightly convex inetallic surfaces, separated by a

stratum of air 0.125 centimetres thick, has been shown by
Thomson to be about 5500 volts. The difference of potential

which produces the sparks between the electrodes of an elec^

trical machine, which are sometimes fifty or sixty centimetres

long, must therefore be very great. The quantity of electricity
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which passes during the discharge is, however, exceedingly-

small, on account of the great resistanc'e of the medium through

which the discharge takes place.

Faraday showed that many of the phenomena of the dis-,

charge depend to some extent upon the medium in which it

occurs. In chlorine the action seems to be the reverse of that

in air, and those peculiar discharges which in air appear at the

positive electrode appear in chlorine at the negative electrode.

It was proved by Franklin that the lightning flash is an

electrical discharge between a cloud and the earth or another:

cloud at a , different electrical potential. The differences of

potential to which such discharges are due must be fenornious,.

and the heat developed by the discharge shows that the quantity

of electricity which passes in it is not inconsiderable.

Slowly moving fire-balls are sometimes seen, which last for a

considerable time and disappear with a loud report and with

all the attendant phenomena of a lightning discharge. It is

not improbable that they are glow discharges which appear

just before the difference of potential between the cloud and

the earth becomes sufficiently great to give rise to a lightning

flash.

239. The Electrical Discharge in Rarefied Gases.—If the

air between the electrodes of an electrical machine be heated,

it is found that the discharge takes place with greater facility

and that the spark which can be obtained is longer than before.

Similar phenomena appear if the air about the electrodes be

rarefied by means of an air-pump. After the rarefaction has

reached a certain point 1;he discharge ceases to pass as a spark

and becomes continuous. The arrangement in which this dis-

charge is studied consists of a glass tube into which are sealed two

platinum or, preferably, aluminium wires to serve as electrodes,

and from which the air is removed to any required degree of

exhaustion by an air-pump. Such an arrangement is usually

called a vacuum-tube.
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As the exhaustion proceeds there appears about the negative

electrode in the tube a bright glow, separated from the

electrode by a small non-luminous region. The body of the

tube is filled with a faint rosy light, which in many cases breaks

up into. a succession of bright and dark layers transverse to the

direction of the discharge. The discharge in this case is called

the stratified discharge. A vacuum-tube in which the exhaus-

tion is such that the phenomena are those here described is

often called a Geissler tube. As the exhaustion is raised still

higher, the rosy light in the tube fades out, the non-luminous

space around the negative electrode becomes very much greater,

and the phenomena in the tube become exceedingly interesting.

They were discovered and have been carefully studied by
Crookes, and the vacuum-tubes in which they appear are hence

called Crookes tubes. They may be most conveniently de-

scribed by assuming that there is a special discharge from the

negative electrode, which we will usually call the discharge.

This view .receives some support from the fact that the relations

of current and resistance in the tube are such as to indicate a

counter electromotive force at the negative electrode.

The region occupied by the discharge from the negative

electrode may be recognized by a faint blue light, which was

not visible in the former condition of the tube. At every point

on the wall of the tube to which this discharge extends occurs

a brilliant phosphorescent glow, the color of which depends on

the nature of the glass. The discharge seems to be indepen-

dent of the position of the positive dqctrode, and to take place

in nearly straight lines,"which start normally from the negative

electrode. If two negative electrodes be fixed in the tubfe, the

discharge from one seems to be deflected by the other, and two

discharges which meet at right angles seem to deflect one

another.

If the discharge from a flat electrode be made to fall upon a
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body which can be moved, such as a glass film, or the vane of

a light, wheel, mechanical motions will be set up.

If the negative electrode be made in the form of a spherical

cup, and a strip of platinum foil be placed at its centre, the foil

will become heated to redness when the discharge is set up.

Two discharges in the same direction repel one another as if

they were similarly electrified, and a magnet, brought near the

outside of the tube, will deflect a discharge as if it were an

electrical current.

The explanation of these phenomena is probably that given

by Crookes, and adopted by Spottiswoode and Moulton. It is

assumed that they are due to the presence of the molecules of

gas left in the tube after the exhaustion has been brought to
'

an end. The mean free path of the molecules in the tube is

much greater than that at ordinary densities, and they can

accprdingly move through long distances in the tube before

their original motion is checked by collision with other mole-

cules. It is assumed that the molecules of gas in the tube are

attracted by the negative electrode, are charged negatively by

it, and are then repelled. The phenomena which have been

described are then due to their' collision with other bodies or

with the wall of th^ tube, or to their mutual electrical repul-

sions and to the action between a moving quantity of electricity

and a magnet.

The experiments of Spottiswoode and Moulton, who showed

that the same phenomena appeared at lower exhaustions, if the

intensity of the discharge were increased, are in favor of this

explanation. So is also the fact that the Crookes phenomena

appear with a maximum intensity at a certain period during the

exhaustion of the tube, while if the exhaustibn be carried as

far as possible, by the help of chemical means, they cease

altogether and no current passes in the tube. The connection

of these phenomena ^yith the action of the radiometer (§1 56)

.is also at once apparent.



SOUND.

CHAPTER I.

ORIGIN AND TRANSMISSION OF SOUND,

240. Definitions.—Acoustics has for its object the study of

those phenomena which may be perceived by the ear. The
sensations produced through the ear, and the causes that give

rise to them, are called sounds.

241. Origin of Sound.—Sound is produced by vibratory

movements in elastic bodies. The vibratory motion of bodies

when producing sound is often evident to the eye. In some
cases the sound seems to result from a continuous movement,
but even in these cases the vibratory motion can be shown by
means of an apparatus known as a manometric capsule, devised

by Konig. It consists of a blocks. Fig. 76,

< in which is a cavity covered by a membrane
b. By means of a tube c illuminating gas is

led into the cavity, and, passing out through

the tube d, burns in a jet at e. It is evident

that, if the membrane b be made to move fig. ^e.

suddenly inward or outward, it will compress or rarefy the gas.

in the capsule, and so cause the flow at the orifice and the

•height of the flame to increase or diminish. Any sound of

sufficient intensity in the vicinity of the capsule causes an al-

ternate lengthening arid shortening of the flame, which, how-
ever, occur too frequently to be directly observed. By mov-

23
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ing the eyes while keeping the flame in view, or by observing

the image of the flame in a mirror which is turned from side

to side, while the flame is quiescent, it appears drawn out into

a broad band of light, but when it is agitated by a sound near

it, it appears serrate on its upper edge or even 'as a series of

separate flames. ' This lengthening and shortening of the flame

is evidence of a to-and-fro movement of the membrane, and

hence of the sounding body that gave rise to the movement.

If a hole be made in the, side of an organ-pipe and the capsule

made to cover it, the vibration^ of the air-column within the

pipe may be shown. By suitable devices the vibratory motion

of all sounding bodies may be demonstrated.

242. Propagation of Sound.—The vibratory motion of a

sounding body is ordinarily transmitted to the ear through the

air. This is proved by placing a sounding body under the' re-

ceiver of an air-pump and exhausting the air. The sound be-

comes fainter and fainter as the exhaustion proceeds, and

finally becomes inaudible if the vacuum is good. Sound may,

however, be transmitted by any elastic body.

In order to study the character of the motion by which

sound is propagated, let us^ suppose AB (Fig. jf) to represent

AS

,

Fig. 77.

a cylinder of some elastic substance, and siippose the layer of

particles a to suffer a small displacement to the right. The

effect of this displacement is not immediately to moVe forward

the succeeding layers, but a approaches b, producing a conden-

sation, and developing a force that soon moves b forward ; this

in turn moves forward the next layer, and so the motion is

transmitted from layer to layer ' through the cylinder with a



-242] ORIGIN AND TRANSMISSION OF SOUND. 355

velocity that depends upon the elasticity (§ 76) of the sub-

-stance, and upon its density. This velocity is expressed by

/E
the formula V=t^ y:, in which E represents ' the elasticity of

the substance, and D its density (§ 268). Now, if we suppose

the layer a, from any cause whatever, to execute regular vibra-

tions, this movement will be transmitted to the succeeding

layers with the velocity given by the formula, and, in time,

each layer of particles in the cylinder will be executing vibra-

tions similar to those of a. If the vibrations of a be performed

in the time t, the motion will be transmitted during one com-
plete vibration of a to a distance s — vt, where v is the velocity

of propagation, say to a' , during two complete vibrations of a,

to a distance 2s = 2vt, or to a" , during three complete vibra-

tions to a!" , and so on. It is evident that thfe layer a' begins

its first vibration at the instant that a begins its second vibra-

tion, a" begins its first vibration at the instant that a' begins

its second, and a its third vibration. The layer midway be-

tween a and a' evidently begins its vibration just as a com-

pletes the first half of its vibration, and therefore moves for-

ward while a moves backward. This condition of things' exist-

ing in the cylinder constitutes a wave mption. While a moves
forward, the portions near it are 'compressed. While it moves '

backward, they are dilated. Whatever the condition at a, the

same condition will exist at the same instant at a' , </', etc.

The distance aa' = a'a" is called a wave length; it is the dis-

tance from any one particle to the next one of which the vibra-

tions are in thef same phase (§ 19). If the condition at a and

a' be one of condensation, it is evident that at d, midway be-

tween a and a' , there must be a rarefaction. In the wave
length aqi exist all intermediate conditions of condensation

and rarefaction. These conditions must follow each other

along the cylinder with the velocij:y of the transmitted motion, '

and they constitute a. progressive wave moving with this veloc-
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ity. If the vibratory motion with which a is endowed be com-

municated by a sounding body, the wave is a sound-wave. If,

instead of a cylinder of the substance, we have an indefinite-

medium in the midst of which the sounding body is placed,

the motion is transmitted in all directions as spherical waves

about the sounding body as a centre.

243. Mode of Propagation of Wave Motion.-^The mode
of transmission of wave motions was first shown by Huyghehs,_

and the principle involved is known as Huyghens' principle.^

Let a (Fig. 78) be a centre from which sound originates. At
the end of a certain time it will have reached the surfalce mn.

From the preceding discussion it is evident that each particle

of the surface mn has a vibratory motion

similar to that at a. Any one of those par-

ticles would, if vibrating alone, be, like a, the

centre of a system of spherical waves, and

each of them must, therefore, be considered

as a wave centre from which spherical waves
ij(^ proceed. Suppose such a wave to proceed

from each one of them for the. short dis-

tance cd. Since the number of the element-

ary spherical waves is very great, it is plain

that they will coalesce to form the surface

m'n' which determines a new position of the

wave surface. In some cases the existence

of these elementary waves need not be con-

sidered, but there are many phenomena of wave motion which

can only be studied by recognizing the fact that propagation,

always takes place as above described.

244. Graphic Representation ofWave Motion.—In order

to study the movements of a body in which a wave motion

exists, especially -when two or more systems of waves exist in

the same body, it is convenient to represent the movement,

by a sinusoidal curve, as described in § 19. j

Fig. 78.
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Suppose the layer a (Fig. 77) to move with a simple har-

monic motion of which the amplitude i§ a and the period T,

and let time be reckoned from the instant that the particles

pass the position of equilibrium in a positive direction. A
sinusoidal curve may be constructed to represent either the

displacements of the various layers from their positions of

equilibrium, or the velocities with which they are severally

moving at a given time.

To construct the first curve let the several points along O^
(Fig. 79) represent points of the body through which the wave
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y = a sin \ VI I

T

{* X\ / V= a sm 2n I„ —)' (102)

The quantity z/
7* equals the distance through which the move-

ment is transmitted during the time of one complete vibration

of the particle at O. Putting this equal to A., we have finally

(f-f). (.03)

Suppose ? = o, and give to x various values. The corresponding

values of y will represent the displacement at that instant of the

particle the distance of which from the origin is x. For x = o,,

j)/=:0. Yoxx ^^, y= — a. Forj; = -JA,, j = o. For;i;,= |A,

y =^ a. For jr = A, _;/ = o, etc. ' Laying off these values of x on

OX and erecting perpendiculars equal to the corresponding

values oi y, we have the curve Obcde ....
The above expression for y may be put in the form

jf= asin 23-r

fc)-

Hence, if any finite value be assigned to /, we shall obtain for

y the same values as were obtained above for t = o, U we in-

crease each of the values of x by -:^. For instance, if i equal
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iT, we have y=:0 for x = JA,, yz= — a for x=^'^, etc., and the

curve becomes the dotted line b'c'd' .... The effect of in-

creasing t is to displace the curve along OX in the direction of

propagation, of the wave.

The formula for constructing the curve of velocities is derived

in the same way as that for displacements. It is

2na It x\
y'= —jT cos 2n I y;— y I. (104)

Fig. 8b shows the relation of the two curves. The upper is the

curve of displacement, and the lower of velocity.

Fig. 80.

245. Composition of Wave Motions.—The composition

of wave motions may be studied by the help of the curves ex-

plained above. If two systems of waves coexist in the same

body, the displacement of any particle at any instant will be

the algebraic sum of the displacements due to the systems taken

separately. If the curve of displacements be drawn for each

.

system, the algebraic sum of the ordinates will give the ordi-

nates of the curve representing the actual displacements. In
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Fig. 81 the dotted line and the^light full line represent respec-

tively the displacements due to

two wave systems of the same

period and amplitude. The
heavy line represents the actual

displacement. 1 In I the two

systems are in the same phase

;

in II the phases differ by J, and

in III by \, of a period. If both

wave systems move in the same
direction,' it is evident that the

conditions of the body will be;

continuously shown by Suppos-

ing the heavy line to rnove in

the same direction with the

III

h
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III

IV

are as 1:2. It will be noticed that the resultant

longer a simple sinusoid.

In the same way the resultant

wave may be constructed for any

number of wave systems having

any relation of wave lengths, am-

plitudes, and phases. A very im-

portant case is that of two wave sys-

tems of the same period moving in

opposite directions with the same

velocity. In this case the two sys-

tems no longer maintain the same

relative positions, and the resultant

curve is not displaced along the

axis, but continually changes form.

In Fig. 83, let the full and dotted

lines in I represent, at a given in-

stant, the displacements due"to the

two waves respectively. The re-

sultant is plainly the straight line

ab, which indicates that at that

instant there is no displacement

I
of any particle. At an instant

later by ^ period, as shown in II,

the wave represented by the full

line has moved to the right \ wave

length, while that represented by
the dotted line has moved to the

left the same distance. The heavy viii

line indicates the corresponding

displacements. In III, IV, V,

€tc., the conditions at 'instants \,

f, \, etc., periods later are repre-

sented. A comparison of these '

pio. 83.

curve IS no

VI

VII

IX e
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figures will show that the particles at c and d are always at rest,

that the particles between c and d all move in ,the same direc- ,

tion at the same time, and that particles on the opposite sides

oic ox d are always moving in opposite directions. It follows

that the resultant wave has no progressive motion. It is a.

stationary wave. Places where no motion occurs, such as c and

d, are called nodes. The space between two nodes is an inter-}^

node or ventralsegment. The middle of a ventral segment, where

the motion is greatest, is an anti-node. It -vfrill be seen later
;

that all sounding bodies afford examples of stationary waves. .;,

246. Reflection of Waves.—When a wave reaches thq.<,

bounding surface between two media, one of three cases may
occur

:

(i) The particles of the second medium may have the same

facility for. movement as those of the first. The condition at

the boundary will then be the same as that at any point pre-

viously traversed, and the wave will proceed as though the first <

medium were continuous. •

,

(2) The particles of the second medium may move with less.i

facility than those of the first. Then the condensed portion of

a wave which reaches the boundary becomes more condensed ,

in consequence of the restricted forward movement of the

bounding particles, and the rarefied portion becorties more rare-

fied,' because those particles are also restricted in their backward

motion. The condensation and rarefaction are communicated,
>

backward from particle to particle of the first medium, and con-

stitute a reflected wave. It will be seen that, when the con-

densed portion of the wave, in which the particles have a for-

ward movement, reaches the boundary, the effect is a greater

condensation, that is, the same effect as would be produced by;

injparting a backward, movement to the bounding particles if

no wave previously existed. In the direct rarefied portion of

the wave the movement of the particles is backward, and the
,

effect, at the boundary, of' a greater rarefaction is what would.
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be produced by a forward movement of those particles. The
effect in this case is, therefore, to reverse the motion of the

particles. It is called reflection with change of sign.

(3) The particles of the second medium may move more

freely than those of the first. In this case, wh^n a wave in the

first medium reaches the boundary, the bounding particles,

instead of stopping with a displacement such as they would

reach in the interior of the medium, move to a greater distance,

and this movement is communicated back from particle to par-

I
tide as a reflected wave in which the motion has the same sign

as in the direct wave. It is reflection without change of sign.

The two latter cases are extremely important in the study of

the formation of stationary waves in sounding bodies.

247. Law of Reflection.—Let lis suppose a system of

spherical waves departing from the point C (Fig. 84). Let mn
be the intersection of one of

the waves with the plane of the

pap6r. Let AB be the trace of

a plane smooth surface perpen-

dicular to the plane of the

paper, upon which the waves

impinge, mo shows the position

which the wave of which mn is

a part would have occupied

had it npt been intercepted by

the surface. From the last

section it appears that reflection

will take place as the wave mno

strikes the various points of AB. In § 243 it was seen that

any point of a wave may be considered as the centre of a

wave System, and we may therefore take n' , n'',,etc., the points

of intersection of the surface ^5. with the wave mn when it

occupied the positions m'n', m"n", etc., as the centres of sys-

tems of spherical waves, the resultant of which would be the

Fig. 84.
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actual wave proceeding from AB. With n' as a centre describe

a sphere tangent to mno at,o. It is evident that this will repre-

sent the elementary spherical wave of which the centre is n'

when the main wave is at mn. Describe similar spheres with

n", n'", etc., as centres. The surface np, which envelops and is

tangent to all these spheres, represents the wave reflected from

AB. If that part of the plane of the paper below AB be re-

volved about -45 as an axis until it concides with the paper.-

above AB, so will coincide with sp, s'o' with s'p', etc., and hence

no with np. But no is a circle with C as a centre ; np is, there- '»

fore, a circle of which the centre is C, on a perpendicular to

AB through C, and as far below AB as C is above; When,
therefore, a wave is reflected at a plane surface, the centres of

the incident and reflected waves are on the same line perpen-

dicular to the reflecting surface, and at equal distances from

the surface on opposite sides.



CHAPTER II.

SOUNDS AND MUSIC.

COMPARISON OF SOUNDS.

248. Musical Tones and Noises.—The distinction be-

tween the impressions produced by musical tones and by noises

is familiar to all. Physically, a musical tone is a sound the

vibrations of which are regular and periodic. A noise is a sound

the vibrations of which are very irregular. It may result from

a confusion of musical tones, and is not always devoid of musi-

cal value. The sound produced by a block of wood dropped

on the floor would not be called a musical tone, but if blocks of

wood of proper shape and size be dropped upon the- floor in

succession, they will give the tones of the musical scale.

Musical tones may differ from one another in pitch, depend-

ing upon the frequency of the vibrations ; in loudness, depending

upon the amplitude of vibration ; and in quality, depending

upon the manner in which the vibration is executed. In regard

to pitch, tones are distinguished as high or low, acute or grave.

In regard to loudness, they are distinguished as loud or soft.

The quality of musical tones enables us to distinguish the tones

of different instruments even when sounding the same notes. \

249. Methods of Determining the Number of Vibra-

tions of a Musical Tone.—That the pitch of a tone depends

upon the frequency of vibrations may be simply shown by hold-

ing the corner of a card against the teeth of a revolving wheel.

With a very slow motion the card snaps from tooth to tooth,

making a succession of distinct taps, which, when the revolutions
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are sufficiently rapid, blend together and p'Voduce a continuous

tone, the pitch of which rises and falls with the changes of speed,

Savart made use of such a wheel to determine the number of

vibrations corresponding to a tone of given pitch. ' After regu-

lating the speed of rotation until the given pitch was reached,

the number of revolutions per second was determined by a

simple attachment ; this number multiplied by the number of

teeth in the wheel gave the number of vibrations per second.

The siren is an instrument for producing musical tones by
puffs of air succeeding each other at short equal intervals. A
circular disk having in it a series of equidistant holes arranged

in a circle around its axis is supported so as to revolve parallel

to and almost touching a metal plate in which is a similar series

of holes. The plate forms one side of a small chamber, to which

air is supplied from an organ bellows. If there be twenty holes

in the disk, and if it be placed so that these holes correspond

to thos,e in the plate, air will escape through all of them. If

the disk be turned through a small angle, the holes in the plate

will be covered and the escape of air will cease. If the disk be

turned still further, at one twentieth of a revolution from its

first position, air will again escape, and if it rotate continuously,

air will escape twenty times in a revolution. When the rota-

'

tion is sufficiently rapid, a continuous tone is produced the pitch

of which rises as the speed increases. The siren may be used

exactly as the toothed wheel to determine the number of vibra-

tions corresponding to any tone. *

By drilling the holes in the plate obliquely forward in the

direction of rotation, and those in the disk obliquely backward,

the escaping air will cause the disk to rotate, and the speed of

rotation may be controlled by controlling the pressure of aif in

the chamber.

Sirens are sometimes made with several series of holes in

the disk. These serve not only the purposes described above,
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lut also to compare tones of which the vibration numbers have
ertain ratios.

The number of vibrations of a

ounding body may sometimes be de-

ermined by attaching to it a light

tylus which is made to trace a curve

pon a smoked glass or cylinder. In-

tead of attaching the stylus to the

punding body directly, which is prac-

icable only in a few eases, it may be at-

ached to a membrane which is caused

vibrate by the sound-waves which
he body generates. A membrane re-

roduces very faithfully all the charac-

sristics of the sound-waves, and the

urve traced by the stylus attached to

: gives , information, therefore, not

nly in regard to the number of vibra-

ions, but to some extent in regard

3 their amplitude and form.

PHYSICAL THEORY OF MUSIC.

250. Concord and Discord.—
i/hen two or more tones are sounded
jgether, if the effect be pleasing there

said to be concord; if harsh, discord.

o understand the cause of discord,'

ippose two tones of nearly the same;

itch to be sounded together. The re-

dtant curve, constructed as in § 245,
like those in Fig. 85, which repre-

:nt the resultants when the periods Fig, 8s.'

the components have the ratio 81 : 80 and when they have
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the ratio 16:15. The figure indicates, what experiment veri-

fies, that the resultant sound suffers periodic variations in in-

tensity. When these variations occur at such intervals as to

be readily distinguished, they are called beats. These beats

occur more and more frequently as the numbers expressing

the ratio of the vibrations reduced to its lowest terms become

smaller, until they are no longer distinguishable as separate

beats, but appear as an unpleasant roughness in the sound..

If the terms of the ratio become smaller still,' the roughness

diminishes, and when the ratio is f the eflect is no longer

unpleasant. This, and ratios expressed by smaller numbers,,

as |-, I", f, f, \, represent concordant combinations.

251. Major and Minor Triads.—Three tones of which the

vibration numbers are as 4 : S : 6 form a concordant combination

called the major triad. The ratio 10: 12: 15 represents another

concordant combination called the minor triad. Fig. 86 shows

the resultant curves for the two triads.

4:S:6

lffil2:15

Fig. 86.

252. Intervals.—The 2«^^rz/«/between two tones is expressed

by the ratio of their vibration numbers, using the larger, as the

numerator. Certain intervals have received names derived

from the relative positions of the two tones in tlie musical

scale, as described below. The interval \ is called an octave;:

f, a fifth; 1^, a fourth; \, a major third; f, a minor third.

253. Musical Scales.—A musical scale is a series of tones

which have been chosen to meet the demands of musical com-

position. There are at present two principal scales in use, each
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consisting of seven notes, with their octaves, chosen with refer-

ence to their fitness to produce pleasing effects when used in

combination.
,

In one, called the major scale, the first, third,

and fifth, the fourth, sixth, and eighty, and the fifth, seventh,

and ninth tones, form major triads. In the other, called' the

minor scale, the same tones form minor triads. From this it is

easy to deduce the following relations

:

MAJOR SCALE.

1'

9
Tone Number i 2 3 4 5 6 7 8

Letter CDE F GA BCD
Name do or ut re mi fa sol la si ut re

Number of vibrations m |m fm |m |m fm ^m 2m \m
Intervals from tone to tone.. f J^ ^ | i^ 9. ^s

MINOR SCALE.
'

Tone Number. , i 2 3 4 5 6 7 8 9
Letter A B C D E F G A' B'

Name la si ut re mi fa sol la si

Number of vibrations m |m |m |m fm fm |m 2m |m
Intervals from tone to tone.. f if V I tI I ¥

The-derivation of the names of the intervals will now be
apparent. For example, an interval of a third is the interval

between any tone of the scale and the third one from it, count-

ing the first as i. If we consider the intervals from tone to

tone, it is seen that the pitch does not rise by equal steps, but

that there are three different intervals, \, 1^, and ^. The first

two are usually considered the same, and are called whole tones.

The third is a half-tone or semitone.

It is desirable to be able to use any tone of a musical in-

strument as the first tone or tonic of a musical scale. To per-

mit this, when the tones of the instrument are fixed, it is plain

that extr^ tones, other than those of the simple scale, must be

provided in order that the proper sequence of intervals may be

maintained. Suppose the tonic to be transposed from C to D.
24
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The semitones should now come, in the major scale, between F
and G, and C and D', instead of between E and F, and B and

C'. To accomplish this, a tone must be substituted for F and

another for C. These are called F sharp and C sharp respec-

tively, and their vibration numbers are determined by multiply-

ing the vibration numbers of the tones which they replace by f|.

The introduction of five such extra tones, making twelve in

the octave, enables us to preserve the proper sequence of whole

tones and semitones, whatever tone is taken as the tonic. J^ut

if we consider that the whole tones are not all the same, and

propose to preserve exactly all the intervals of tjie transposed;

scale, the problem becomes much more diflficult, and can only

be solved at the expense of too great complication in the in-

strument. Instead of attempting it, a system of tuning, called

temperament, is used by which the twelve tones referred to above

are made to serve for the several scales, so that, while none are

perfect, the imperfections are nowhere marked. The system of

temperament usually employed, or at least aimed at, called the

even temperament, divides the octave into twelve equal semi-

tones, and each interval is therefore the twelfth root of 2.

With instruments in which the tones are not fixed, like the

violin for instance, the skilful performer may give them their

exact value.

For convenience in the practice pf music and in the con-

struction of musical instruments, a standard pitch must be

adopted. This pitch is usually determined by assigning a fixed

vibration number to the tone above the middle C of the piano,

represented by the letter A'. This number is about 440, but

varies somewhat in different countries and at different times.

In the instruments made by Konig for scientific purposes, the

vibration number 256 is assigned to the middle C. This has

the advantage that the vibration numbers of the successive

octaves of this tone are powers of 2.



CHAPTER III.

VIBRATIONS OF SOUNDING BODIES.

254. General Considerations.—The principles developed

in § 246 apply directly in the study of the vibrations of sound-

ing bodies. When any part of a body which is capable of act-

ing as a sounding body is set in vibration, a wave is propagated

through it to its boundaries, and is there reflected. The re-

flected wave, travelling away from the boundary, in conjunction

with the direct wave going toward it, produces a stationary

' wave. These stationary waves are characteristic of the motion

of all sounding bodies. Fixed points of a body often determine

the position of nodes, and in all cases the length of the wave

must have some relation to the dimensions of the body.

255. Organ Pipes.—A column of air, enclosed in a tube of

suitable dimensions, may be made to vibrate and become a

sounding body. Let us suppose a tube closed at one end and

open at the other. If the air particles at the open end be sud-

denly moved inward, a pulse travels to the closed end, and, -is

there reflected with change of sign (§ 246). It returns to the

open end and is again reflected, this time without change of

sign, because there is greater freedom of motion without than

within the tube. As it starts again toward the closed end, the

air particles that compose it move outward instead of inward.

If they now receive an independent impulse outward, the two

effects are added and a greater disturbance results. So, by

properly timing small impulses at the open end of the tube, the

air in it may be made to vibrate strongly.
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If a continuous vibration be maintained at the open end of

the tube, waves follow each other up the tube, are reflected with

change of sign at the closed end, and returning, are reflected

without change of sign at the open end. Any given wave a,

therefore, starts up the tube the second time with its phase:

changed by half a period. The direct wave that starts up

the tube at the same instant must be in the same phase as the

reflected wave, and it therefore differs in phase half a period

from the direct wave a. In other words, any wave returning

to the mouth-piece must find the vibrations there opposite in

phase to those which existed when it left. This is possible only

when the vibrating body makes, during the time the wave is

going up the tube and back, i, 3, 5, or some odd number of

half-vibrations. By constructing the curves representing the

stationary wave resulting from the superposition of the two
systems of vibrations, it will be seen that there is always a node

at the closed end of the tube and an anti-node at the mouth.

When there ,is i half-vibration while the wave travels up and
back, the length of the tube is \ the wave length ; when there

are 3 half-vibrations in 'the same time, the length of the tube is

f the wave length, and there is a node at one third the length

of the tube from the mouth.

If the tube be open at both ends, reflection without change
of sign takes place in both cases, and the reflected wave starts

up the tube the second time in the same phase as^at first. The
vibrations must therefore be so timed that i, 2, 3, 4, or some
whole number of complete vibrations are performed while the

wave travels up the tube and back.
, A construction of the

curve representing the stationary wave in this case will show,

for the smallest number of vibrations, a node in the middle of

the tube and an. anti-node at each end. The length of the

tube is therefore \ the wave length for this rate of vibration.

The vibration numbers of the several tones produced by an

open tube are evidently in the ratio of the series of whole num-
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bers I, 2, 3, 4, etc., while for the closed tube only those tones

can be produced of which the vibration numbers are in the ratio

of the series of odd numbers i, 3, 5, etc.i It is evident also, that

the lowest tone of the closed tube is an octave lower than that

of the open tube.

This lowest tone of the tube is called the fundamental, and

the others are called overtones, or harmonics. These simple

relations between the length of the tube and length of the wave

are only realized when the tubes are so narrow that the air

particles lying in a plane cross-section are all actuated by the

same movement. This is never the case at the open end of the

tubs, and the distance from this end to the first-node is, there-

fore, always less than a quarter wave length.

256. Modes of Exciting Vibrations in Tubes.—If a tim-

ing fork be held in front of the open mouth of a tube of proper,

length, the sound of the fork is strongly reinforced by the

vibration of the air in the tube. If we merely

blow across the open end of a tube, the agitation

of the air may, by the reaction of the returning

reflected pulses, be made to assume a regular vi-

bration of the proper rate and the column made

to sound. In organ pipes a mouthpiece of the

form shown in Fig. 87 is often em-

ployed. The thin sheet of air projected

against the thin edge is thrown into

vibration. Those' elements of this vi-

bration which correspond in frequency

with the pitch of the pipe are strongly

reinforced by the action of the station-

ary wave set up in the pipe, and hence

the tone proper to the pipe is produced.
Fig. 37. Fig. Sia.

Sometimes reeds are used, as shown in Fig. 87a. The air es-

caping from the chamber a through the passage c causes the

reed r to vibrate. This alternately closes and opens the passage.
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and so throws into vibration the air in the pipe. If the reed

be stiff, and have a determined period of vibration of its own,,

it must be tuned to suit the period of the air column which it.

is intended to set in vibration. If the reed be very flexible it

will accommodate itself to the rate of vibration of the air col-,

umh, and may then serve to produce, various tones,, as in the

clarionet.

In instruments like the cornet and bugle, the lips of the.

player act as a reed, and the player may at will produce many
of the different overtones. In that way melodies may be played

without the use of keys or other devices for changing the length

of the air column.

Vibrations may be excited in a tube by placing a gas flame

at the proper point in it. The flame thus employed is called a

singingflame. The organ of the voice is a kind of reed pipe

in which little folds of membrane, called vocal chords, serve as

reeds which can be tuned to different pitches by muscular

effort, and the cavity of the mouth and larynx serves as a pipe

in which the mass of air may also be changed at will, in form

and volume.'

257. Longitudinal Vibrations of Rods.—A rod free at both

ends vibrates as the column of air in an open tube. Any dis-

placement produced at one end is trahsmitted with the velocity

of sound in the material to the other end, is there reflected with-

out change of sign and returns to the starting point to be re-

flected again exactly as in the open tube. The fundamental

tone corresponds to. a stationary wave haying a node at the cen-

tre bf the rod.

258. Longitudinal Vibrations of.Cords.—Cords fixed at

both ends may be made to vibrate by rubbing them lengthwise.

Here reflection with change of sign takes place at both ends,;

which brings the wave as it leaves the starting point the second

time to the same phase as when it first left it, and there must

be, therefore, as in the open tube, i, 2, 3, 4, etc., vibrations
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while the wave travels twice the length of the cord. The veloc-

ity of transmission of a longitudinal displacement in a wir.e de-

pends upon the elasticity and density of the material only.

The velocity and the rate of vibration are, therefore, nearly

independent of the stretching force.

259. Transverse Vibrations of Cords.— If a transverse

vibration be given to a point upon a, wire fastened at both ends,

everything relating to the reflection of the wave motion and

the formation of stationary waves is the same as for longitudinal

displacements. The velocity of transmission, and consequently

the frequency of the vibrations, are, however, very different.

If the cord offer no resistance to flexure, the force tending to

restore it to its position of equilibrium is entirely due to the

stretching force. This, therefore, takes the place of ihe elas-

ticity in the formula for transmission of longitudinal vibrations

(§ 268). The mass of the cord per unit length takes the place

of the density in the same fprmula. Thus we have the formula

for the velocity

where P is the stretching force and m the mass per unit length..

The greatest time of vibration, the time required for the wave

to travel twice the length of the string, is

r=^ =.i^
,

(.05)

. and the number of vibrations per second is
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Hence, the number of vibrations of a string is inversely as the

length, directly as the square root of the tension, and inversely

as the square root of the mass per unit length. These laws are

readily verified by experiment.

260. Transverse Vibrations of Rods, Plates, etc.—The
vibrations of rods, plates, and bells are all cases of stationary

waves resulting from system? of waves travelling in opposite di-

rections. Subdivision into segments occurs, but, in these cases,

the relations of the various overtones are not so simple as in

the cases before considered. For a rod fixed at. one end, sound-

ing its fundamental tone, there is a node at the fixed end only.

For the first overtone there is a second node near the free end

of the rod, and the number of vibrations is a little more than

six time* the number for the fundamental.

A rod free at both ends has two nodes when sounding its

fundamental, as shown in Fig. 88. The distance of these nodes

^ from the ends is about | the length of

--^^
'

'' '

the rod. If the rod be bent, the nodes

Fig. 88. ' approach the, centre until, when it has

assumed the u form like a tuning-fork, the two nodes are very

near the centre. This will be understood from Fig. 89.

^ /

Fig. 89.

The nodal lines on plates may be shown by fixing the plate;

in a horizontal position and sprinkling sand over its surface.

When the plate is made to vibrate, the sand gathers at the nodes
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and marks their position. The figures thus formed are known
as Chladni's figures.

261. Communication of Vibrations.—If several pendulums
be suspended from the same support, and one of them be made
to vibrate, any others which have the same period of vibration

will soon be found in motion, while those which have a different

period will show no signs of disturbance. The vibration of the

first pendulum produces a slight movement of the support which
is communicated alike to all the other pendulums. Each move-
ment may be considered as a slight impulse, which imparts to

€ach pendulum a, very small vibratory motion. For those pen-

dulums having the same period as the one in vibration, these

impulses come just in time to increase the motion already pro-

duced, and so, after a time, produce a sensible motion ; while for

those pendulums having a different period, the vibration at first

imparted will not keep time with the impulses, and' these will

therefore as often tend to destroy as to increase the motion.

It is important to note that the pendulum imparting the motion
loses all it imparts. This is not only true of pendulums, but of

all vibrating bodies. Two strings stretched from the same sup-

port and tuned to unison will both vibrate when either one is

caused to sound. A tuning-fork suitably mounted on a sound-

ing-box will communicate its vibtations to another tuned to

exact unison even when they are thirty or forty feet apart and

.

only air intervenes. In this case it is the soundrwave generated

by the first fork which excites the second fork, and in so doing

the wave loses a part of its own motion, so that beyond the

second fork, on the line joining the two, the sound will be less

intense than at the same distance in other directions.

Air columns of suitable dirnensions will vibrate in sympathy
,

with other sounding bodies. If water be gradually poured into

a deep jar, over the mouth of which is a vibrating tuning-fork,

there will be found in general a certain length of the air column

ior which the tone of the fork *is strongly reinforced. From
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the theory of organ pipes, it is plain that this length corresponds,

approximately to a quarter wave length for that tone. In this,

case, also, when the strongest reinforcement occurs, the sound of

the fork will rapidly die away. The sounding-boxes on which

the tuning-forks made by Konig are mounted are of such

dimensions that the enclosed body of air will vibrate in unison

with the fork, but they are purposely made not quite of the

dimensions for the best resonance, in order that the forks may
not too quickly be brought to rest.

A membrane or a disk, fastened by its edges, may respond

to and reproduce more or less faithfully a great variety of sounds,.,

Hence such disks, or diaphragms, are used in instruments like

the telephone and phonograph, designed to reproduce the

sounds of the voice. The phonograph consists of a mouthpiece

and disk similar to that used in the telephone, but the disk

has fastened to its centre, on.the side opposite the mouthpiece,

a short stiff stylus, which serves to record the vibrations of the

disk upon a sheet of tinfoil or' wax moved along beneath it.

The foil is wrapped upon a cylinder having a spiral groove on

its surface, and upon its axle a screw thread of the same pitch

works in a fixed nut so that, when the cylinder revolves, it has

also an end^Vise motion, such that a fixed point would follow
,

the spiral groove on its surface. To use the instrument, the disk

is placed in position with the stylus attached adjusted to enter

the groove in the cylinder and slightly indenting the foil. The
cylinder is revolved while sounds are produced in front of the

disk. The disk vibrates, causing the stylus to indent the foil

more or less deeply, so leaving a permanent record. If now the

cylinder be turned back to the starting-point and then turned

forward, causing the stylus to go over again the same path, the

indentations previously made in the foil now cause the stylus,

and consequently the disk, to vibrate and reproduce the sound

that produced the record.

The sounding-boards of the various stringed instruments are
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in effect thin disks, and afford examples of the reinforcement

of vibrations of widely different pitch and quaHty by the same
body. The strings of an instrument are of themselves insuffi-

cient to communicate to the air their vibrations, and it is only

through the sounding-board that the vibrations of the string

can give rise to audible sounds. The quality of stringed instru-

ments, therefore, depends largely upon the character of the

sounding-board.

The tympanum of the ear furnishes another example of the

facility with which membranes respond to a great variety of

sounds.



CHAPTER IV.

ANALYSIS OF SOUNDS AND SOUND SENSATIONS.

262. Quality.—^As has already been stat'ed, the tones of dif-

ferent instruments, although of the same pitch and intensity,

are distinguished by their quality. It was also stated that the

quality of a tone depends upon the manner in which the vibra-

tion is executed. The meaning of this statement can best be

understood by considering the curves which represent the

Fig. 90.

vibrations. In Fig. 90 are given several forms of vibration

curves of the same period.

Every continuous musical tone must result^ from a periodic

vibration, that is, a vibration which, however complicated it

may be, repeats itself at least as frequently as do the vibrations'

of the lowest audible tone. According to Fourier's theorem

(§ 19)1 every periodic vibration is resolvable into simple har-

monic vibrations having commensurable periods. It has been
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1

seen that all sounding bodies may subdivide into segments, and

produce a series of tones pf which the vibration periods gener-

ally bear a simple relation to each other. These may be pro-

duced simultaneously by the same body, and so give rise to

complex tones the character of which will vary with the nature

and intensity of the simple tones produced. It has been held

that the quality of a complex tone is not affected by change of

phase pf the component simple tones relative to each other.

Some experiments by Konig seem to indicate, however, that

the quality does change when there is merely change of phase.

Fig. 91.

In Fig. 91 are shown three curves, each representing a fun-

damental accompanied by the harmonics up to the tenth. The

Fig. gz.

curves differ only in the different phases of the components

relative to each other.
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Fig. 92 shows similar curves produced by 'a fundamental

accompanied by the odd harmonics. 1

263. Resonators for the Study of Complex Tones.—An
apparatus devised by Helmholtz serves to analyze complex

tones and indicate the simple tones of which they are composed.

It consists of a series of hollow spheres or cylinders, called

resonators, which are tuned to certain tones. If a tube, lead

from the resonator to the ear and a sound be produced,, one of

Fig. 93.

the components of which is the tone to which the resonator is

tuned, the mass of air in it will be set in vibration and that tone

will be clearly heard ; or, if the resonator be connected by a

rubber tube to a manometric capsule (§ 241), the gas flame con-

nected with the capsule will be disturbed whenever the tone to
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which the resonator is tuned is produced in the vicinity, either

ty itself or as a component of a complex tone. By trying the

resonators of a series, one after another, the several compo-

nents of a complex tone may be detected and its composition

-demonstrated.

264. Vowel Sounds.—Helmholtz has shown that the dif-

ferences between the vowel sounds are only differences of

quality. That the vowel sounds correspond to distinct forms

of vibration is well shown by means of the manometric flame.

By connecting a mouthpiece to the rear of the capsule, and

singing into it the different vowel sounds, the flame images

assume distinct forms for each. Some of these forms are

shown in Fig. 93.

265. Optical Method of Studying Vibrations. — The vi-

bratory motion of sounding bodies may sometimes be studied

»=€ <S=4'

jn

Fig. 94.

to advantage by observing the lines traced by liiininous points

upon the vibrating body or by observing the movenaent of a

beam of light reflected from a mirror attached to the body.

,
Young studied the vibrations of strings by placing the

string where a thin sheet of light would fall across it, so as to

illuminate a single point. When the string was caused to

vibrate, the path of the point appeared as a continuous line, in

consequence of the persistence of vision.. Some of the results

which he obtained are given in Fig. 94, taken from Tyndall on

-Sound.
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The most interesting application of this method was made
by Lissajou to illustrate the composition of vibratory motions,

at right angles to each other. If a beam, of light be refiected-

to a screen from a mirror attached to a tuning-fork, when the

tuning-fork vibrates the spot on the screen will describe a sim-

ple harmonic motion and will appear as a straight line of light.

If the beam, instead of being reflected to a screpn, fall upon a

mirror attached to a second fork, mounted so as to vibrate in

V

Fig. 95.

a plane at right angles to the first, the spot of light will, when
both forks vibrate, be actuated by two simple harmonic mo-

tions at right angles to each other and the resultant path will

appear as a curve more or less complicated, depending upon
the relation of the two forks to each other as to both period;

and phase (§ 19). Fig. 95 shows some of the simpler forms of

these curves. The figures of the upper line are those produced

by two forks in unison ; those of the second line by two forks,

of which the vibration numbers are as 2 : i ; those of the lower

line by two forks of which the vibra:tion numbers are as 3 : 2.



CHAPTER V.

EFFECTS OF THE COEXISTENCE OF SOUNDS.

266. Beats.—It has already been explained (§ 250) that,

when two tones of nearly the same pitch are sounded together,

variations of intensity, called beats, are heard. Helmholtz's

theory of the perception of beats was, that, of the little fibres

in the ear which are tuned so as to vibrate with the various

tones, those which are nearly in unison affect one another so as

to increase and diminish one another's motions, and hence that

no beats could be perceived unless the tones were nearly in

unison. Beats are, however, heard when a tone and its octave

are not quite in tune, and, in general, a tone making n vibra-

tions produces m beats when sounded with a tone making
2n ± m, 3« ± m, etc., vibrations. This was explained in ac-

cordance with Helmholtz's theory, by assuming that one of the

harmonics of the lower tone, which is nearly in unison with

n
Fig. 96.

the upper, causes the beats, or, in cases where this is inad-

missible, that they are caused by the lower tone in conjunc-

tion with a resultant tone (§ 267). An exhaustive research by

Konig, however, has demonstrated that beats are perceived.

25
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when neither of the above suppositions is admissible. Figs.

96 and 97 show that the resultant vibrations are affected by-

changes of amplitude similar to, though less in extent than,

the changes which occur when the tones are nearly in unison.

In Fig. 96, I represents a flame image obtained when two tones

making n and n ±m vibrations respectively, are produced to-

1539

in

15:46

Fig. 97.

gether, and II represents the image when the number of

vibrations are n and 2n ± m. Fig. 97 shows traces obtained

mechanically. In I the numbers of the component vibrations

were n and n-\-m,m. II and III n and 2n ±. m, and in IV n

and 3« -|- m.. In all these cases a variation of amplitude occurs

during the same intervals, and it seems reasonable to suppose

that those variations of amplitude should cause variations in

intensity in the sound perceived.
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Cross has shown that the beating of two tones is perfectly-

well perceived when the tones themselves are heard separately

by the two ears ; one tone being heard directly by one ear,

while the other, produced in a distant room, is heard by the

other ear by means of a telephone. Beats are also perceived

when tones are produced at a distance from each other and from

the listener, who hears them by means of separate telephones

through separate lines. In this case there is no possibility of

the formation of a resultant wave, or of any combination of the

two sounds in the ear.

267. Resultant Tones.—Resultant tones are produced by
combinations of two tones. Those most generally recognized

have a vibration number equal to the sum or difference of the

vibration numbers of their primaries. For instance, utj, making

2048 vibrations, and re^, making 2304 vibrations, when sounded

together give utj, making 256 vibrations. These tones are

only heard well when the primaries are loud, and it requires an

effort of the attention and some experience to hear them at all.

Summation tones are more difficult to recognize than differ-

ence tones, nevertheless they have an influence in determining

the general effect produced when musical tones are sounded

together. Other resultant tones may be heard under favorable

conditions. As described above, two tones making n and n-\-m

vibrations respectively, when m is considerably less than n, give

a resultant tone making m vibrations, but a tone making n

vibrations in combination with one making 2« + /«, 3« + m,

or xn-\-in vibrations, gives the same resultant. This has

sometimes been explained by assuming that intermediate re-

sultants are produced, which, with one of the primaries, pro-

duce resultants of a higher order. In the case of the two tones

making n and 3« -j- »2 vibrations, for instance, the first differ-

ence tone would make 2n-\-m vibrations. This tone and thfe

one making n vibrations would give the tone making n-\-m

vibrations ; this tone, in turn, and the one making n vibrations
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would give the tone making m, vibrations. This last tone is

the one which is heard most plainly, and it seems difficult to

admit that it can be the resultant of tones which are only heard

very feebly, and often not at all. In Fig. 97 are represented

the resultant curves produced in several of these cases. The
first curve corresponds to two tones of which , the vibration

numbers are as 15:16. It shows the periodic increase and de-

crease in amplitude, occurring once every 15 vibrations, which,

if not too frequent, give rise to beats (§ 250). If the pitch of

the primaries be raised, preserving the relation 15:16, the

beats become more frequent, and finally a distinct tone is

heard, the vibration number of which corresponds to the num-

ber of beats that should exist. It was for a long time consid-

ered that the resultant tone was merely the rapid recurrence of

beats. Helmholtz has shown by a mathematical investigation

that a distinct wave making m vibrations will result from the

coexistence of two waves making n and n-\- m vibrations, and

he believes that mere alternations of intensity, such as consti-

tute beats, occurring ever so rapidly cannot produce a tone.

In II and III (Fig. 97) are the curves resulting from two

tones, the intervals between which are respectively

I5:29(=2 X 15 — i) and 15 :3i(= 2 X 15 + O-

Running through these may be seen a periodic change corre-

sponding exactly in period to that shown in I. The same is

true also of the curve in IV, which is the resultant for two

tones the interval between which is 15 :46(= 3 X 15 + i). In

all these cases, as has been already said (§ 266), if the pitch of

the components be not too high, one beat is heard for every 15

vibrations of the lower component. Fig. 96 shows the flame

images for the intervals n:n-\- m and n:2n-\- m. The vary-

ing amplitudes resulting in m beats per second are very evident

in both. In all these cases, also, as the pitch of the compo-
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nents rises the beats become more frequent, and finally a re-

sultant tone is heard, having, as already stated, one vibration

for every 15 vibrations of the lower component. In Fig. 98

1^539

13539

are shown two resultant curves having three components of

which the vibration numbers are as 1:15: 29. In I the three

components all start in the same phase. In II, when 15 and 29

are in the same phase, I is in the opposite phase.



CHAPTER VI.

VELOCITY OF SOUND.

268. Theoretical Velocity.—The disturbance of the parts

of any elastic medium which is propagating sound is assumed,

in theoretical discussions, to take place in the line of direction

of the propagation of the sound, and to be such that the type

of the disturbance remains unaltered during its propagation.

The velocity of propagation of such a disturbance may be in-

vestigated by the following method, due to Rankine.

Let us consider, as in § 242, a portion of the elastic medium
in the form of an indefinitely long cylinder. If a disturbance

be set up at any cross-section of this cylinder (Fig. 99), which

consists of a displacement of the matter in that cross-section

in the direction of the axis of the cylinder, it will, by hy-

pothesis, be propagated in the direction of the axis'with a con-

stant velocity V, which is to be determined. If we consider

any cross-section of the cylinder which is traversed by the dis-

turbance, the matter which passes through it at any instant will

Fig. 99.

have a velocity which may vary from zero to the maximum
velocity of the vibrating matter, either positively when this ve-

locity is in the direction of propagation of the disturbance, or

negatively when it is opposite to it.

If we now conceive an imaginary cross-section A to move
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along the cylinder with the disturbance with the velocity V,.

the velocity of the particles in it at any instant will be always,

the same. Let us call this velocity v^- The velocity of the

cross-section relative to the moving particles in it is then

V— Va. If we represent by d^ the density of the medium at

the cross-section through which the velocity of the particles

is Va, which is the same for all positions of the moving cross-

section, and if we assume that the area of the cross-section is

unity, then the quantity of matter M which passes through

the moving cross-section in unit time is

M^div-v:).

If we conceive any other cross-section B to be moving with

the disturbance in a similar manner, the same quantity of mat-

terM will pass through it in unit time, since the two cross-

sections move with the same velocity and the density of the

matter between them remains the same. Hence we have

M^=- di{y— Vi), where di and vi, represent the quantities at the

cross-section B corresponding to those at the cross-section A
represented by d^ and Va- Hence d^iV—v^ = diiV— vi).

Since this equation is true whatever be the distance between

the cross-sections, it is true for that position of the cross-section

B for which Vi, — o, and for whj^ch di, = D, the density of

the medium in its undisturbed condition. ' Hence we have

M = DV, da{V- z/«) ^DV, and

If the disturbance be small, the expression on the right is

approximately the condensation per unit volume of the me-

dium at the cross-section A, and the equation shows that the

latio of the velocity of the matter passing through the cross-



392 ELEMENTARY PHYSICS. [269

section A to the velocity of propagation of the disturbance is

equal to the condensation at that cross-section.

Now, to eleminate the unknown expressions Va. and d^, we
must find a new equation involving them. A quantity of mat-

terM enters the region between the two moving cross-sections

with the \jeIocity v^, and an equal quantity leaves the region

with the velocity Vi,. The difference of the momenta of the

entering and outgoing quantities is Mi^a — "Vb)- This differ-

ence can only be due to the different pressures pa and pi on the

moving cross-sections, since the interactions of the portion of

matter between those cross-sections cannot change the momen-
tum of that portion. Hence we have

M{va — vi)=p^—Pi.

If we for convenience assume Vb = o, we have pi = P, the

pressure in the medium in its undisturbed condition. If we

Pa — P
further substitute for Va. its value, we obtain MV= da. -^ j^.

If the changes in pressure and density be small, the quantity

Pa — P
da -T tS equals E, the modulus of elasticity of the medium.

If we further substitute forM its value VD, we obtain finally

^ = I°*^=V^
^ (108)

269. Velocity of Sound in Air.—In air at constant tem-

perature the elasticity is numerically equal to the pressure

(§ 77)- The compressions and rarefactions in a sound-wave

occur so rapidly that during the passage of a wave there is no

time for the transfer of heat, and the elasticity to be considered,

therefore, is the elasticity when no heat enters or escapes

(§ 158).
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If the ratio of the two elasticities be represented by y we
have for the elasticity when no heat enters or escapes E = yP,

and the velocity of a sound-wave in air at zero temperature is

given by

^ D

The coefficient y equals 1.41. P is the pressure exerted by a

column of mercury 76 centimetres high and with a cross-section

of one square centimetre, or 76 X 13-59 X 981 = 1013373 dynes

per square centimetre. D equals 0.0O1293 grams at 0°, hence

F=|/ 1.41 X 1013373^ :)0/o _ 23240,
O.CXDI293

or 332.4 metres per second.

Since the density of air changes with the temperature, the

velocity of sound must also change. If dt represent the den-

sity at temperature t, and d^ the density at zero,

i-\-kf

irom § 128. The formula for velocity then becomes

V=V^P[, + kl).

This formula shaws that the velocity at any temperature is the

velocity at 0° multiplied by the square root of the factor of ex-

pansion.
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270. Measurements of the Velocity of Sound.—The ve-

locity of sound in air has been measured by observing the time

required for the report of a gun to travel to a known distance;

One of the best determinations was that made in Holland

in 1822. Guns were fired alternately at two stations about nine

miles apart. Observers at one station observed the time of

seeing the flash and hearing the report from the other. The
guns being fired alternately, and the sound travelling in oppo-

site directions, the effect of wind was eliminated in the mean

of the results at the two stations. It is possible, by causing the

sound-wave to act upon diaphragms, to make it record its own

time of departure and arrival, and by making use of some of the

methods of estimating very small intervals of time the velocity

of sound may be measured by experiments conducted within

the limits of an ordinary building.

The velocity of sound in water was determined on Lake

Geneva in 1826 by an experiment analogous to that by which

the velocity in air was determined.

In § 255 and § 257 it is shown that the time of one vibration

of any body vibrating longitudinally is the time required for a

sound-wave to travel twice the distance between two nodes.

The velocity may, therefore, be measured by determining the

number of vibrations per second of the sound emitted, and

measuring the distance between the nodes.

In an open organ-pipe, or a rod free at both ends, when the

fundamental tone is sounded the sound travels twice the length,

of the rod or pipe during the time of one complete vibration.

If rods of different materials be cut to such lengths that they

all give the same fundamental tone when vibrating longitudi-

nally, the ratio of their lengths will be that of the velocity of

sound in them.

In Kundt's experiment, the end of a rod having a light disk

attached is inserted in a glass tube containing a light powder

strewn over its inner surface. When the rod is made to vibrate
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longitudinally, the air-column in the tube, if of the proper length,

is made to vibrate in unison with it. This agitates the powder

and causes it to indicate the positions of the nodes in the vi-

brating air-column. The ratio of the velocity of sound in the

solid to that in air is thus the ratio of the length of the rod to

the distance between the nodes in the air-column.



LIGHT.

CHAPTER I.

PROPAGATION OF LIGHT.

271. Vision and Light.—The ancient philosophers, before

Aristotle, believed that vision consisted in the contact of some

subtle emanation from the eye with the object seen. Aristotle

showed the absurdity of this view by suggesting that if it were

true, one should be able to see in the dark. Since his time, it

has been generally admitted that vision results from something

proceeding from the body seen to the eye, and there impress-

ing the optic nerve. This we call light.

Optics treats of the phenomena of light. It is conveniently

divided into two branches, Physical Optics, which treats of the

phenomena resulting from the propagation of light through

space and through different medfa, and Physiological Optics,

which treats of the sense of vision.

272. Theories of Light.—At the time of Newton, light

was generally considered to .consist of particles which were not

those of ordinary matter, projected from a luminous body,

and exciting vision by their impact on the retina. This theory

was strongly supported by Newton himself, who found in it

plausible explanations of most luminous phenomena then

known. But even in Newton's time phenomena were known

which could only be explained by assigning to the luminiferous
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particles very improbable forms and motions, and, since his

time, facts have been discovered that are inconsistent with any
emission theory.

,

The undulatory theory, which is the one universally adopted,
assumes that light is a wave motion in an elastic medium per-

vading all space. All luminous bodies excite in this medium
systems of waves which are propagated according to the same
mechanical laws as those which govern wave systems in other

media, some of which have been developed in § 19 and §§ 242-

245. The undulatory theory has stood well the test of ex-

plaining newly discovered phenomena, and has moreover led

to the discovery of phenomena not before known. The ob-

jections to the theory are that it requires the hypothesis of a
medium of the existence of which there is no direct evidence,

pervading space, and requires us to ascribe to that medium
properties unlike those of any body with which we are ac-

quainted.

A modified form of the undulatory theory, known as the

electromagnetic theory of light, was proposed by Maxwell. It

will be briefly presented after the facts connecting light and
electricity have been considered.

273. Wave Surfaces.—In § 243 is explained the general

mode of propagation of wave motion . in accordance with

Huyghens' principle. When light, emanating from a point,

proceeds with the same velocity in all directions, the wave
fronts are evidently concentric spherical surfaces. There are,

however, many cases, especially in crystalline bodies, of un-

equal velocities in different directions. In these cases the

wave fronts are not spherical but ellipsoidal, or surfaces of still'

greater complexity.

274, Straight Lines of Light.—When a small screen A
(Fig. 100) is placed between the eye and a luminous point,

the luminous point is no longer visible. Light cannot reach

the eye by the curved or broken line PAE, and is therefore
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said to move in straight lines. This seems not to accord with

Huyghens' principle which makes any wave front the resultant

of an infinite number of elementary waves proceeding from the

Fig. 100.

various points of the same wave front in one of its earlier posi-

tions. It can, however, easily be shown that when the wave
lengths are small, the disturbance at any point /"(Fig. loi) is due

almost wholly to a very small portion

of the approaching wave. Let us

consider first the case of an isotropic

medium, in which light moves in all

directions with equal velocities. Let

mn be the front of a plane wave per-

pendicular to the plane of the paper,

moving from left to right or towards

P. Draw PA perpendicular to the

wave front, and draw Pa, Pb, etc., at such obliquities that Pa
shall exceed PA by half a wave length, Pb exceed Pa by
half a wave length, etc. We will designate' the wave length

by A.

It is evident that the total effect at P will be the sum of the

effects due to the small portions Aa, ab, etc. Since Pa is half a

wave length greater than PA, and Pb half a wave length

greater than Pa, each p6int of ab is half a wave length farther

from Pthan some point in Aa ; hence elementary waves from

ab will meet at P waves from Aa in the opposite phase. It

appears, therefore, that the effects at Pof the portions ab and

Aa are opposite in sign, and tend to annul each other. The

same is true of be and cd. But the effects of Aa and ab may
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be considered as proportional to their lengths. Hence, by-

computing the lengths, we can determine the resultant effect

at P. Let AP= x. From the construction, we have

Ab = V{x^Xy-x' = V2x\+ r;

Ac = V{x+ fiy-x' = Vs^r+fT;

Ad= Vix+ zXy-x' =4/4^r+^;
etc. = etc.

For light the values of A, are between 0.00039 and 0.00076

mm., and if x be taken as 1000 mm., A" will be very small in

.comparison to x7i and may be omitted. The above formulas

then become, if Vx^- be represented by /,

Aa — IVT;

Ab = IV2;

Ac = iVi;

Ad= IVa;
etc. = etc.,

and the several portions into which the wave front is divided

-are

Aa = I = il;

ab = 1{V2 — i) = 0.414/;

be = l{\^ - \^) = 0.318/;

cd = 1{Va - ^) = 0-268/.
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Taking now the pairs of which the effects at P are opposite

in sign, we find Aa a little more than twice ab, while be and cd

are nearly equal. It is evident also, that for portions beyond

d, adjacent pairs will be still more nearly equal, and the effect

at P, therefore, of each pair of segments beyond b almost van-

ishes. The effect at P is then almost wholly due to that por-

tion of Aa that is not neutralized by ab. But, taking the

greatest value of A., Aa = Vlck = V0.76 = 0.87 mm., a very

small distance. Hence, under the conditions assumed, the

effect at any point P is due to that

portion of the wave front near the

foot of the perpendicular let fall

from P on the wave front. It may
be demonstrated by experiment

that the portions of the wave be-

yond Aa neutralize each other.

Suppose a screen mn in the position

shown in Fig. 102. The point P
will be in shadow. If the darkness at P is due to interference

as explained, light should be restored by suppressing the in-

terfering waves. If a second screen be placed at Tn'n' so as to

cut off the waves proceeding from points above b, waves from

points between a and b will no longer be neutralized, and light

should fall at P. To test this conclusion the edge of a flat

flame may be observed through a narrow slit in a screen. In-

stead of the narrow edge of the flame, a broad luminous surface

is seen, in which the brightness gradually diminishes from the

centre towards the edges. If we consider the wave front just

entering the slit, it will be seen that elementary waves proceed

from all points of it, and the slit being very narrow it is only

in very oblique directions that pairs of these waves can meet in

opposite phases. Hence, light proceeds in oblique lines behind

the screen, and from oui* habit of locating visible objects back

along the line of light entering the eye, the flame appears as a

Fig. 102.
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broad surface. It will be seen by reference to Fig. loi that

the elementary wave that first reaches P is the

one to which the disturbance there is principally

due. Other waves arriving later find there the

opposite phase of some wave that has preceded

them. When the velocity in all directions is the

same, the first wave to reach P is the one that

starts from the foot of a perpendicular let fall from

Pox\ the wave front. Hence light is said to travel

in straight lines perpendicular to the wave front.

If, however, light does not move' with equal

velocities in all directions, the last statement is

no longer true, as will be seen from Fig. 103.

Here mn represents a wave front, proceeding

towards Pin a medium in which the velocities

^

'-\

Fig. 103.

in different

directions are such that the elementary wave surfaces are ellip-

soids. The ellipses in the figure may be taken as sections of

these ellipsoids. The wave first to reach P is not the one

that starts from A at the foot of the perpendicular, but from

A'. It is from A' that P derives its light, and the line of

propagation is no longer perpendicular to the wave front.

It is important to note that the deductions of this section

apply only where A. is small in relation to x, so that 1^ ,may be

neglected in comparison with x\.. With sound-waves this is

not true, and if a computation similar to that given above

for light-waves be made for sound, not omitting A.", it will

be seen why there are no definite straight lines of sound and

no sharp acousJ:ic shadows.

275. Principle of Least Time.—The above are only par-

ticular cases of a law of very general application, that light in

going from one point to another follows the path that requires

least time. The reason is that values in the vicinity of a mini-

mum change slowly, and there will be a number of points in

the neighborhood of that point from which the light-waves are

26
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propagated to the given point in the least time, from which

waves will proceed to that point in sensibly the same time, and,

meeting. in the same phase, combine to produce light. It is

also true that values change slowly in the vicinity of a maxi-

mum, and there are cases where the path followed by the light

is determined by the fact that the time is a maximum instead

of a minimum.

276. Shadows.—An optical shadow is the space from which

light is excluded by an opaque body. When the luminous

source is a point, or very small, the boundary between the light^

and shadow is very sharp.* When the luminous source is large,

there is a portion of the space behind the opaque body, called

the umbra, which is in deep shadow, and surrounding this is a

space which is in shadow with reference to one portion of the

luminous source while it is in the light with reference to an-

other portion. The space from which light is only partially ex-

cluded is ^e. penumbra. Fig. 104 shows the boundaries of

the umbra and penumbra. It is evident that the light di-

FlG.

minishes gradually from the outer boundary of the penumbra
to the boundary of the umbra.

277. Images by Small Apertures.—If light from a single

luminous point pass through a small hole of any form, and fall

on a screen at some distance, it produces a luminous spot of the

same form as the opening. Light from several points will pro-

duce several such spots. If the luminous source be a surface,

the spots produced by the light from its several points will
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overlap each other and form an illuminated surface, which, if

the source be large in comparison with the opening, will have

the general form of the source, and will be inverted. The illu-

minated surface is an inverted image of the source. If a small

opening be made in the window-shutter of a darkened room,

images of external objects will be seen on the wall opposite.

The smaller the opening, the more sharply defined, but the less

brilliant, is the image.



CHAPTER 11.

REFLECTION AND REFRACTION.

278. Law of Reflection.—In § 246, it is shown that when
a wave passes from one medium into another where the parti-

cles constituting' the wave move with greater or less facility, a

wave is propagated back into the iirst medium. It is shown in

§ 247, that when the surface separating the two media is a plane

surface, the centres of the incident and reflected waves are on

the same perpendicular to the sur-

face^ and at equal distances on oppo-

site sides. Considering the lines to

which,' as shown in § 274, the , wave
propagation in the case of light is re-

stricted, a very simple law follows

at once from this relation of the

incident and reflected waves. In

Fig. 105, C and C represent the centres of the incident and re-

flected waves mn, on. CA, AB are the paths of the incident

and reflected light. It will be evident from the figure that

CA, AB are in the same plane normal to the reflecting surface,

and that they make equal angles with the normal AN. CAN
is called the angle of incidence, and NAB the angle of reflec-

tion. Hence we may state the law of reflection as follows

:

The angles of incidence and reflection are equal, and lie in the

same plane normal to the reflecting surface. It can easily be

shown that light traverses the path CAB from Cto B which

fulfils these laws, in less time than it requires to traverse any

other path by way of the reflecting surface.

Fig. 105'.
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279. Law of Refraction.—If the incident wave pass from

the one medium into the other, there is in general a change in

the wave front, and a consequent change in the direction of the

light. Let us first consider the simple case of a plane wave en-

tering a homogeneous, isotropic medium of which the bounding

surface is plane. Suppose both planes perpendicular to the

Fig. 106.

plane of the paper, and let AB (Fig. 106) represent the

intersection of the surface of the medium, and mn the in-

section of the wave, with, that plane. Let v represent the

velocity of light in the medium above AB, and v' the ve-

locity in the medium below it. Let m'o be the position

•of the wave in the first medium after a time t. Then mo
equals vt. As the wave front passes from mn to m'o, the

points of the separating surface between n and are succes-

sively disturbed, and become centres of spherical waves propa-

gated into the second medium with tEe velocity v' . The wave

surface of which the centre is n would, at the end of time t,

nn' v
have a radius nn" = v't, such that —-,7

= -
. Similarly, the

nn v

wave from any other point, as s, would have a radius st' such

st 1)

that —; = —r, and the wave surface within the second medium
st If
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is evidently the plane on". As the direction of propagation

is perpendicular to the wave front, op will represent the direc-

tion of the light in the second medium. In the triangles non'

and non" we have nn' = no sin Aon, and nn" = no sin Aon"^,

hence

sin Aon' nn' v

sin Aon" ~ nn" ~ i/'

If we represent the angle of incidence moN by i, and the

angle of refraction poN' by r, we have

Sltl % 1)—— = -, = u, a constant. . (ioq)»
sm r V ^ '

This constant is called the index of refraction. This is the

expression of Snell's /azy ^y r^/irac^«^«. Here again the time

required for the light to pass by mop from m in one medium

to/ in the other is less than by any other path.

'- We may now trace a wave through a medium bounded by

plane surfaces. Suppose the wave front and bounding planes.

of the medium all perpendicular to the plane of the paper.

sin i V
We shall have as above for the first surface -:— = - = ;«.-sm r V

sin i' 1/
and for the second surface —.—

, = -7 = jx.
sm r V

If, as is often the case, the light emerge into the first me-

dium,

,, , sin i' v' I , .

v" — V, and -:—
-, = - = -. (iio>

smr V f*

If the bounding planes be parallel, i' = r, and we have

sin r _ I

sin r'
~

fi'
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hence ?"= r', or the incident and emergent waves are parallel.

If the two bounding planes form an angle .(4 the body is

called a prism. The wave incident upon the second face will

make with it an angle A — r,

and the emergent wave is found

by the relation

sin(^— r)

sin r'

sm rI

-or . ,, . r

/< sin(^— r)

=/t.

The direction of the emerging

wave front may be found by
construction.

Draw Ai (Fig. 107) parallel

to the incident wave. From
some point B on AB describe

an arc tangent to At; from the

Bi
same point with a radius — describe the arc rr. Ar, tangent

to rr, is the refracted wave front. From some point C on AC
describe an arc tangent to Ar, and from the same point as cen-

tre describe another arc r'r' with a radius /< X Cy. A tan-

gent from A to r'r' is parallel to the emergent wave. It might

be that A would ,fall inside the arc r'r' so that no tangent

could be drawn. That would mean that there could be no

emergent wave. The angle of incidence for which this occurs,

can readily be obtained from Eq. (no). We have

,7sm t

sinr'
— , or sm r fA, sm t

.

Now the maximum value of sin / is i, which is reached when-

sin i' = —
. Any larger value of sin i' gives an impossible value.
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for sin r'.' The angle i

the substance

sin " ^ - is called the critical angle of

For larger angles of incidence the light cannot

emerge, but is 'totally reflected within the

medium.

Another construction for the front of

the emergent wave is very instructive.

Let AB, AC (Fig. 108), be the faces of

the pris'm, and let Ai drawn through A
be parallel to the front of the incident

wave. With A as centre, and any radius,

•f draw an arc im. From the same centre

Ai
with radius Ar

H-

describe another

arc. From r draw rx parallel to AB and; join Ax. Ax is

parallel to the front of the refracted wave. For in the triangle

Arx we have

sin Arx sin irx

sin Axr sinAxr
Ax
-J- = /t, by construction.

Since irx equals the angle of incidence, Axr equals the

angle of refraction. Now' draw xr' parallel to AC, and Ar'

is parallel to the front of the emergent wave. The angle r'Ar

is the deviation that the wave suffers in passing through the

prism. Suppose the prism to rotate about A and the angle of

incidence to change in such a way that the condition of

things may be always represented by rotating the angle rxr' , of

which' the sides are parallel to the sides of the prism, around jr.

It is plain that the arc r'r will be longer or shorter as it crosses

the angle more or less obliquely, and that its length will be a

minimum when xr' and xr are equal—that is, when the line Ax
bisects the angle at x and consequently the angle A of the

prism. But the arc r'r may be taken as the measure of the
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angle of deviation r'Ar at its centre. Hence that angle is a

minimum when it is bisected by Ax, and when, therefore, the

angles of incidence and of emergence are equal. Considering

that the path of the light is perpendicular to the wave front,

the above construction shows that the deviation, when p. is

greater than unity, is always toward the thicker portion of the

prism. The case when emergence is no longer possible is also

:shown by the failure of XT' , .parallel to A C, to cut the arc r'r.

The critical angle is reached when xr' becomes tangent to r'r.

If, in a prism of any substance, xr and xr' be both tangent to

r'r, the angle of that prism is the greatest angle which will ad-

mit of the passage of light through the prism.

If a beam of white light be allowed to fall upon a prism

through a narrow slit, it will be refracted, in general, in accord-

ance with the law already given. The image of the slit, how-

ever, when projected upon a screen, appears not as a single line

of white light, but as a variously colored band. This is due to,

the fact that the indices of refraction for light of different

colors are different. Hence the index of refraction of a sub-

stance, as ordinarily given, depends upon the color of the light

used in determining it, and has no definite meaning unless that

•color is stated.

280. Plane Mirrors.—The wave on, represented in F"ig.

105, is the same as would have come from a luminous point at

C if the' reflecting surface did not intervene. If this wave

reach the eye of an observer, it has the same effect as though

coming from such a point, and the observer apparently sees a

luminous point at C . C is a virtual image of C. When an

^ object is in front of a plane mirror each of its points has an

image symmetrically situated in relation to the mirror, and

these constitute an image of the object like the latter in all

respects, except that by reason of symmetry it is reversed in

one direction.

The reflected light may for all purposes be considered as
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coming from the image. If it fall on a second mirror and be

again reflected, a second image appears behind this mirror, the

position of which is determined by considering the first image

as an object. When two mirrors make an angle, an object

between them will have a series of images, as shown in Fig.

109. ^5 and yl C" represent the intersections of the two mir-

rors with the plane of the paper, to which they are supposed

perpendicular. O is the object. It will

have an image produced by AB, the

position of which is found by drawing^

Ob perpendicular to AB and making-

, mb ^ mO. The light reflected from

AB proceeds as though b were the ob-

ject, and falhng on ^C is again reflect-

ed, giving an image at d . Proceeding

from A C, it may suffer a third reflection

from AB and give a third image at b".

With the angle as in the figure none of the light can suffer a
fourth reflection, because after the third reflection the light

proceeds as though originating at V , and b" is behind the
plane of the mirror AC. Images c, b', and c" are produced by
light which suffers its first reflection from AC. It is easy to^

show that all these points are equidistant from A, and hence
are on the cif'cumference of a circle of which A is the centre.

If OAC -were an even aliquot part of four right angles, c" and

b" would coincide, and the whole number of images, including

the object, would be the quotient of four right angles by the

angle formed by the mirrors. This is the principle of the

kaleidoscope.

281. Spherical Mirrors.—A spherical mirror is a portion

of a spherical surface. It is a concave mirror if reflection

occur on the concave or inner surface ; a convex mirror if it

occur on the convex surface. The centre of the sphere. of

which the mirror forms a part is its centre of curvature. The
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middle point of the surface of the mirror is the vertex. A line

through the centre of curvature and the vertex is \kit principal

axis. Any other line through the centre of curvature is a

secondary axis. The angle between radii drawn to the edge

of the mirror on opposite sides of the vertex is the aperture.

To investigate the effects of reflection from a spherical surface,

let us consider first a concave mirror. Let a light-wave ema-

nate from a point L on the principal axis (Fig. 1 10). In general.

Fig. iio.

different points of the wave will reach the mirror successively,

and, considering the elementary waves that proceed in turn

from its several points, the reflected wave surface may be con-

structed as for a plane mirror. If the mirror were not there

the wave front would, at a certain time, occupy the position

aa. Drawing the elenlentary wave surfaces we have bb, the

position at that instant of the reflected wave. Its form sug-

gests that of a spherical surface, concave toward the front, and

having a centre at gpme point / on the axis. If we assume it

to be so, and try to determine by analysis the position of /, a

real definite result will be proof of the correctness of our

assumption. If bb be a spherical surface and / its centre, it is
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plain that the disturbances propagated from the various points

of bb will reach / at the same instant, and / will at that instant

be the wave front. It is plain, too, that the time occupied by

the wave in going from the radiant point to all points of the

same wave front must be the same. Hence, in a homogeneous

medium, the length of path to the various points of the wave

must be constant, that is, in the case under consideration,

LB -\- Bb must be constant for all points of the wave front bb.

If / be a subsequent position of bb, it follows that LB -f- Bl
must be constant wherever the point B is situated on the re-

flecting surface. .Draw BD perpendicular to the axis of the

mirror. Represent BD by y, AD by x, LA by /, lA by p',

and CA by r. Then we have LB = \/{p — xf -\-y^, and

y = (2r — x)x — 2rx — x''. Hence follows

LB — Vp' — 2px -\- ^ -\- 2rx — jr*

= '\/p'-\-zx{r—p).

If the aperture be small, x will be small in comparison

with the other quantities, and we may obtain the value of LB
to a near approximation by ^extracting the root of the ex-

pression found above and omitting terms containing the second

and higher powers of x. We obtain

Z5 = /+|(r-/) + .,..

In like manner we have

/5=/+|(r-/) + ...,

whence LB + IB -p +p' +% - p) +^X'' - /)•
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When B coincides with A, the above value becomes/ -j-/',

and since upon our supposition all values of LB -\- IB are

equal, we must have

from which we obtain

r . r
p+p' = -

and p'= ^^
2p — r

As this is a definite value, it follows that, for the apertures

for which the approximations by which the result was arrived

at are admissible, the wave surface is practically spherical. Since

the disturbances propagated from bb reach / simultaneously,

their effects are added, and the disturbance at / is far greater

than at ariy other point. The effect of the wave motion is

concentrated at /, and this point is therefore called a focus.

Since the light passes through /, it is a real focus. If / were

the radiant point, it is clear that the reflected light would be

concentrated at L. These two points are therefore called cori-

r r
jugate foci. If we divide both sides of the equation -r-\--, = 2

by r, we have *

-4- -7 = -, (in)p~p r' ^ '

which is the usual form of the equation used to express the

relation between the distances from the mirror of the conju-

gate foci.
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A discussion of this equation leads to some interesting

results.. Suppose/ = 00, then /' = s^r ; that is, when the

radiant is at an infinite distance from the mirror, the focus is

midway between the mirror and the centre. In this case the

incident wave is normal to the principal axis, and the focus is

CciSS&A.\!i\Q principalfocus. Suppose/ = r; /'= r also. When
/ -.TTi r I 2 ,121

t=\r, /' = oo. When/<-, - > - and -, = --^ = a

negative quantity. To interpret this negative result it should

be remembered that all the distances in the formulas were

assumed positive when measured from the mirror toward the

Fig. hi;

source of light. A negative result means that the distance

must be measured in the opposite direction, or behind the

mirror. Fig. iii represents this case. It is evident that

the reflected wave is convex toward the region it is ap-

proaching, and proceeds, as though it had come from /.

/ is therefore a virtual focus. Either of the other quantities

of the formula may have negative values. / will be negative

if waves approaching their centre / fall on the mirror. Plainly

they would be reflected to Z at a distance from the mirror less

r
than — , as may be seen from the formula. If r be negative,

the centre is behind the mirror. The mirror is then convex,

and the formula shows that for all positive values of /, /' is

negative and numerically smaller than /.
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282. Refraction at Spherical Surfaces.—The method of

discussion which has been applied to reflection may be em-

ployed to study refraction at spherical surfaces. Let BD
{Fig. 112) be a spherical surface separating two transparent

Fig.

tnediap Let v represent the velocity of light in the first

*> medium, to tlie left, and v' the velocity in the second medium,

to the right, of BD. Let Z be a radiant point, and mn a sur-

face representing the position which the wave surface would

have occupied at a given instant had there been no change in

the medium, m'n' the wave surface as it exists at the same

instant in the second medium in -consequence of the different

velocity of light in it. Assume as before, in § 281, that mln'

is a spherical surface with centre /. We have

Bm _ Bm'
V V

and
Z5+ LB Bm _

a constant for all points of mn.

spherical surface m'n', we have

If / be the centre of the
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IB . BW _
V

a constant for all points of m'n'.

Taking the difference of the last two equations, and re-

membering that

we obtain r = C — C.

a constant for all points of BD, and hence

1)

LB jlB = a constant.
V

V
But -7 = /I is the index of refraction of the second sub-

stance in relation to the first. Hence LB — fdB = a constant

= LA — /zM. Using the notation of the last section, and
substituting the values of L^ and IB as there found, except

that/" is used instead of/', we have

P+ j{ r-p) - J^p" ^-j,{r - p"))=p- /I/',

whence we obtain -: — -777 = i — w,
P P

and ___ =^. („2)
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If the medium to the right of BD be bounded by a second

spherical surface, it constitutes a lens. Suppose this second

surface to be concave toward / and to have its centre on AC.
The wave m'n' , in passing out at this second surface, suffers a

new change of form precisely analogous to that occurring at

the first surface, and the new centre is given by the formula,

just deduced by substituting for p the distance of the wave
centre from the new surface, and for /< the index of refraction

of the third medium in relation to the second. If s represent

the distance of / from the new surface, /t' the new index, and
p' the new focal distance, we have

/*' \ _jj! — 1

If we suppose the lens to be very thin we may put s = /".

If we suppose also that the medium to the right is the same

as that to the left of the lens, u! is equal to -. Hence

I I

/< I _ fi~
p' p" r' '

Multiplying through by /«, we have

I M _ ^ — M _ /*—

I

p p T r

Eliminating/" between this equation and Eq. 112, we obtain

j,-i = (;._i)(i-i),
(113),

27
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which expresses the relation between the conjugate foci of the

lens. It should be noted that r in the above formulas rep-

resents the radius of the surface on which the light is incident,

and r' that of the surface from which the light emerges. All

the quantities are positive when measured toward the source

of light. Fig. 113 shows sections of the different forms of

lenses produced by cominations of two spherical surfaces, or of •

one plane and one spherical surface.

An application of Eq. 113 will show that for the first three,

which are thickest at the centre, light is concentrated, and for

the second three diffused. The first three are therefore called

converging, and the second three diverging, lenses. Let us

consider the first and fourth forms as typical of the two classes.

The first is a double convex lens. The r of Eq. 1 1 3 is nega-

tive because measured from the lens away from the source of

light. The second term of the formula has therefore a negative

value, and /' is negative except when "^ > (/* — i)(~ ?)•

\lp = 00 , we have - = o and —, =.{y, — i)( ;,), a negative

quantity because r is negative. /' is then the distance of the

principal focus from the lens, and is called the focal length of

the lens. The focal length is usually designated by the sym-

bol f. Its negative value shows that the principal focus is on

the side of the lens opposite the source of light. This focus

is real, because the light passes through it. Eq. 113 is a little

more simple in application if, instead of making the algebraic
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signs of the quantities depend on the direction of measure-

ment, they are made to depend on the form of the surfaces

and the character of the foci. If we assume that radii are

positive when the surfaces are convex, and that focal distances

are positive when foci are real, the signs of/' and r in Eq. 113

must be changed, since in the investigation /' is the distance

of a virtual focus, and r the radius of a concave surface. The
formula then becomes

j>+| = (/^-i)(7 + p). (114)

To apply this formula to a double concave lens, r and r'

are both negative
;
p' is then negative for all positive values of

p. That is, concave lenses have only virtual foci. For a

plano-convex lens (Fig. 113, 2), if light be incident on the

plane surface,

y=oo and j; = (;* - i)- - -.

This gives positive values of/' and real foci for all values of

For a concavo-convex lens (Fig. 113, 6) the second member

of the equation will be negative, since the radius of the con-

cave surface is negative and less numerically than that of the

convex surface. Hence p' is always negative and the focus

virtual when L is real.

283. Images formed by Mirrors.—In Fig. 1 14 let ab rep-

resent an object in front of the concave mirror mn. We know

from what precedes that if we consider only the light incident
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Fig. 114.

not too far from c, the light reflected will be concentrated

at some point a' on the axis ac at a distance from the mirror

given by Eq. 114. a' is a real'

image of a. In the same way
b' is an image of b. If axes

were drawn through other-

points of the object, the im-

ages of those points would her

found in the same way. They
would lie between a' and b'

,

and a!b' is therefore a real image of the object. It is inverted,

and lies between the axes ac, bd, drawn through the extreme
points of the object. The ratio of its size to that of the ob-

ject is seen from the similar triangles abC, a'b'C; to be the.

ratio of.the distances from C. From Eq. in we obtain

/'_ r _r—p'
p 2p —r~ p — r'

Since r —p' and p — r are respectively the distances from-

the centre of the image and object, we have

a'b' _ r-p' p'

ab p — r p'

or, the image and object are to each other in the ratio of their

respective distances from the mirror. As the object approaches,

the image recedes from the mirror and increases in size. At
the centre of curvature the image and object are equal, and
when the object is within the centre and beyond the principal,

focus the image is outside the centre and larger than the ob-

ject. "When the object is between the principal focus and the-

mirror, the image is virtual and larger than the object. Con-

vex mirrors produce only virtual images, which are erect and
smaller than the object.
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284. Images formed by Lenses.—Let us suppose an ob-

ject in front of a double convex lens, which may be taken as

a type of the converging lenses. The point c (Fig. 115) will

have an image at the conjugate

focus on the principal axis, a

and b will have images on

secondary axes drawn through

those points respectively, and

a point called the optical cen- ^'°- "s-

tre of the lens. So long as these secondary axes make but a

small angle with the principal axis, definite foci will be formed

at the same distances as on the principal axis, and an image

a'V will be formed which will be real and inverted, or virtual

and erect, according to the distance of the object from the lens.

The formula

^ + x. = (/'-i)(^4-p) =
^,/ ' / /'

shows that when/ increases/' diminishes, and conversely. It

shows also that when p is less than /, p' is negative, and the

image virtual. It is plain from the figure that the sizes of image

and object are in the ratio of their distances from the lens.

Diverging lenses, like diverging mirrors, produce only virtual

images smaller than the object.

285. Optical Centre.—It was stated in the last section that

the secondary axes of a lens pass through a point called the

•optical centre. The location of this point is determined as fol-

lows: In Fig. 116, let C, C be

the centres of curvature of the

two surfaces of the lens, and let

CA and C'B be two parallel

radii. The tangents at A and

B are also parallel, and light entering at B and emerging at A
is light passing through a medium with parallel surfaces (§ 279),
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and suffers no deviation. If we Ax^yfi AB, cutting the axis at 0^

CA CO CA
the triangles CA O, C'BO are similar, and -^^p^ = 'riTf -^^^ 'HK*

being the ratio of the radii, is constant for all parts of the sur-

CO
faces, hence -t^tt] must be constant, or all lines such as AB must

cut the axis at one point O. O is the optical centre, and light

passing through it is not deviated by the lens.

286. Geometrical Construction of Images.—For the

geometrical construction of images formed by curved surfaces, it

is convenient to use, in place of the waves themselves, lines per-

pendicular to the wave front, which represent the paths which

the light follows, and are called rays of light. These rays,

when perpendicular to a plane wave surface, are parallel, and an

assemblage of such rays, limited by an aperture in a screen, is

called a beam. When the rays are perpendicular to a spherical

wave surface, they pass through the wave centre, and constitute

^pencil.

A plane wave surface perpendicular to the axis of a lens

is converted by the lens into a spherical wave surface with its

centre at the principal focus. The rays perpendicular to the

plane wave surface are parallel to the axis, and after emergence

must all pass through the principal focus. Conversely, rays

emanating from the principal focus emerge from the lens as

rays parallel to. the axis. Also,

rays emanating from any focus

must, after emerging from the

lens, meet at the conjugate

focus. Let Z, Fig. 117, be a

converging lens, and AB an

object. Let O be the optical centre, and F the principal focus.

Since all the rays from A must meet, after emerging from the

lens, at the conjugate focus, whrch is the image of A^ to find the

position of the image it is only necessary to draw two such rays

Fig. 117.
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and find their intersection. The ray through the optical centre
is not deviated, and the straight line^^' represents both the in-
cident and emergent rays. The ray^Z may be considered as one
of a group parallel to the axis. All such rays must, after passing
through the lens, pass through the principal focus. LA', passing
through F, is therefore the emerging ray, and its intersection
with AA' locates the image of A. Hence, to construct the
image of a point, draw from the point two incident rays, and
determine the

, corresponding

emergent rays. The intersec-

tion of these will determine the

image. The rays most conve-

nient to use are the ray through f*--

the optical centre and the ray ''^'°- "*

parallel to the axis or through the principal focus. Fig. 118
gives another example of an image determined by construction.

287. Thick Lenses.—When a lens is of considerable thick-

ness, the formula derived in § 282 does not give the true posi-

tion of the conjugate foci. A formula involving the thickness

of the lens may be derived without difiSculty, but for practical

purposes it is usual to refer all measurements to two planes,,

called the principal planes of the lens. The determination of

the position of these planes involves a discussion which does
not come within the scope of this book.

288. Mirrors and Lenses of Large Aperture.—The
;equations derived in §§281, 282, are only approximations, ap-

plying with sufficient exactness to mirrors and lenses of small

aperture. But for large apertures, terms containing the higher

powers of x cannot be neglected, x will not disappear from the

expression of /', and /' will, therefore, not have a definite

value. In other words, the reflected or refracted wave is not

spherical, and there is no one point / where the light will be

concentrated. Surfaces may, however, be constructed which

will, in certain particular cases, produce by reflection or refrac-
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tion perfectly spherical waves. If we desire to find a surface

such that light from L (Fig. 1 19) is con-

centrated by reflection at /, we remem-

ber that the sum LB -\- Bl must be

constant, and that this is a property of
^'°' "^' an ellipse with foci at L and /. If the

fellipse be constructed and revolved about LI as an axis, it will

generate a surface which will have the required property. If

one of the points L be removed to an infinite distance, the

corresponding wave becomes a plane perpendicular to LI, and

we must have LB-\-BC (Fig. 120) constant,

a property of the parabola. A parabolic

mirror will therefore concentrate at its focus

incident light moving in paths parallel to its

axis, or will reflect incident light diverging

from its focus in plane waves perpendicular

to its axis.

Mirrors and lenses having surfaces which ^'°- "°-

are not spherical are seldom made because of mechanical diffi-

culties of construction. It becomes necessary, therefore, to

consider how the disadvantages arising from the use of spheri-

cal surfaces of large aperture for reflecting or refracting light

may be avoided or reduced.

We will consider first the case of a spherical mirror. It was

shown above that light from one focus of an ellipsoid is reflected

from the ellipsoidal surface in perfectly spherical waves concen-

tric with the other focus. Let Fig. 121 represent a plane sec-

tion through the axis of an ellipsoid, and Fca a small incident

pencil of light proceeding from the focus F. F'ac is a section

of the reflected pencil. It is a property of the ellipse that the

normals to the curve bisect the angles formed by lines to the

two foci. The normal ae bisects the angle FaP , and hence in

Fa Fc
the triangle FaF' we have -^~- = "sr-^ Fa F'e
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If a' move toward c, Fa increases and Fa diminishes. Hence,

from the above proportion, Fe must increase and Fe diminish
;

or, the successive normals as we approach the minor axis cut

the major axis in points successively nearer the centre of the

•ellipse. The normals produced will therefore meet each other

at n beyond the axis. If ac be taken small enough it may be

considered the arc of a circle of which an, en are radii and n

the centre. It is therefore a meridian section of an element

of a spherical surface of which Fn is an axis.

Sections of wave surfaces reflected from the ellipsoid have

their centre at F , and are also sections of wave surfaces re-

flected from the elementary spherical surface. Evidently the

:same would be true for any other meridian section passing

through FA of the sphere of which the elementary surface

forms a part, and the form of the wave surfaces may be con-

ceived by supposing the whole figure to revolve about FA as

an axis. The arc ac describes a zone of the sphere, s, s, r, r,

describe wave surfaces, andF describes a circumference having

its centre on FA. The wave surfaces are portions of the sur-

faces of curved tubes of which the axis is the arc described by

the point F. The line described by F is 2, focal line, and all

the light from the zone described by ac passes through it, or

does so very approximately. If ac be taken nearer to A on the

sphere, F' approaches the axis along the curve FF and finally
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coincides with F" , the focus conjugate to F. F'F" is a caustic

curve, which, when the figure revolves about the axis AF,
describes a caustic, surface. It will be noted that all the light

from the zone described by ac passes through the axis AF be-

tween the points x and y. The light coming from F and re-

flected from a small portion of the spherical surface around b,

thfc middle point of ac, is then concentrated first in a line

through F' at right angles to the paper, and again into the line

xy in the plane, of the paper. Nowhere is it concentrated into

a point. A line drawn through b and the middle of the focal

line through F' is the axis of the reflected pencil. It will in-

tersect the axis of the mirror between x and y. If a plane be

passed through the point of intersection perpendicular to the

axis of the pencil, its intersection with the pencil will be like

an elongated figure 8, which may be considered as a focal line

at right angles to the axis of the pencil, and in the plane of the

paper, and therefore at right angles to the focal line . through

F . Between these two focal lines there is a section of least

area, nearly circular, which is the nearest approach to an image

of F produced by an oblique incidence such as we' have been

considering.

If refraction instead of reflection had taken place at ac, a

result very similar would have been obtained for the refracted

pencil. This failure of spherical reflecting or refracting sur-

faces to bring the light exactly to a focus is called spherical

aberration. In order to obtain a sharp focus, therefore, if only

a single spherical surface be employed, the light must be con-

fined within narrow limits of normal incidence. When reflec-

tion or refraction takes place at two or more surfaces in succes-

sion, the aberration of one may be made to partially correct

the aberration of the other. For instance, when the waves in-

cident upon a double convex lens are plane, the emerging

waves are most nearly spherical when the radius of the second

surface is six times that of the first. Two or more lenses may



290] REFLECTION AND REFRACTION. 427

be so constructed and combined as to give, for sources of light

at a certain distance, almost perfectly spherical emerging

waves. Such combinations are called aplanatic. The same

term is applied to single surfaces so formed as to give by re-

flection or refraction truly spherical waves.

SIMPLE OPTICAL INSTRUMENTS.

289. The Camera Obscura. — If a converging lens be

placed in an opening in the window-shutter of a darkened

room, well-defined images of external objects will be formed

upon a screen placed at a suitable distance. This constitutes

a camera obscura. The photographer's camera is a box in one

side of which is a lens so adjusted as to form an image of ex-

ternal objects on a plate on the opposite side. The relation

deduced in §284 serves to determine the size of the image

which a given lens will produce, or the focal length of a lens

necessary to produce an image of a certain size.

290. The Eye as an Optical Instrument.— The eye, as

may be seen from Fig. 122, which represents a section by a

horizontal plane, is a camera obscura. « is a
^,

transparent membrane called the cornea, be-

hind which is a watery fluid called the aqueous

humor, filling the space between the cornea

and the crystalline lens. Behind this is the

vitreous humor, filling the entire posterior

cavity of the eye. The aqueous humor, crys-

talline lens, and vitreous humor constitute a

system of lenses, equivalent to a single lens of ^'°- "^

about two and a half centimetres focus, which produces a real

inverted image of external objects upon a screen of nervous

tissue called the retina, which lines the inner surface of the

posterior half of the eyeball. The retina is an expansion of the

optic nerve. The light that forms the image upon it excites the
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ends of the nerve, and, through the nerve-fibres leading to the

brain, produces a mental impression, which, partly by the aid

of the other senses, we have learned to interpret as the charac-

teristics of the object the image of which produces the impres-

sion. For distinct vision the image must be sharply formed on

the retina ; but as an object approaches, its image recedes from

a lens, and if, in the eye, there were no compensation, we could

see distinctly objects only at one distance. The eye, however,

adjusts itself to the varying distances of the object by chang-

ing the curvature of the front surface of the crystalline lens.

There is a limit to this adjustment. For most eyes, an object

nearer than fifteen centimetres does not have a distinct image

on the retina.

We may here consider the means by which we estimate the

distance and size of an object. The retina is not all equally

sensitive. The depression at b, called the yellow spot, is much
more sensitive than the other portions, and a minute area in

the centre of that depression is much more sensitive than the

rest of the yellow spot. That part of an image which falls on

this small area is much more distinct than the other parts.

How small this most sensitive area is, can be judged by care-

fully analyzing the effort to see distinctly the minute details of

an object. For instance, in looking at the dot of an i, a

change can be detected in the effort of the muscles that con-

trol the eyeball, when the attention is directed from the upper

to the lower edge of the dot. The eye can then be directed

with great precision to a very small object. The line joining

the centre of the crystalline lens with the centre of the sensi-

tive spot may be called the optic axis ; and when the attention

is directed to any particular point of an object, the eyeballs

are turned by a muscular effort, until both the optic axes pro-

duced outward meet at the point. For objects at a moderate

distance we have learned to associate a particular muscular

effort with a particular distance, and our judgment of such
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distances depends mainly on this association. The angle be-

tween the optic axes when they meet at a point is called the

,

optic angle. Our estimate of the size of an object is'based on

our judgment of its distance, together with the angle which

the object subtends at the eye, called the visual angle. In Fig.

123, when ab is an object, and / the crystalline lens, a is the

visual angle. It is plain that the size of the image on the

retina is proportional to the visual angle. It is plain, too, that

Fig. 123.

an object of twice the size, at twice the distance, would sub-

tend the same visual angle and have an image of the same

size as ab. Nevertheless, if we estimate its distance correctly

we shall estimate its size as twice that of ab ; but if in any way

we are deceived as to its distance, and judge it to be less than

it really is, we underestimate its size. • Most persons underes-

timate heights, and hence underestimate the sizes of objects

high above them. The visual angle is the apparent size of the

object.

291. Magnifying Power.—To increase the apparent size

of an object, and so improve our perception of its details, we

must increase the visual angle. This can be done by bringing

the object nearer the eye, but it is not always convenient or

possible to bring an object near, and even with objects at hand

there is a Hmit to the near approach, due to our inability to

see distinctly very near objects. Certain optical instruments

serve to increase the visual angle, and so improve our vision.

Instruments for examining small objects, and increasing the
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visual angle beyond that which the object subtends at the

nearest point of distinct vision by the unaided eye, are called

microscopes. Those used for observing a distant object and

enlarging the visual angle under which it is seen at that dis-

tance are telescopes. In both cases the ratio of the visual angles,

as the object is seen with the instrument, and without it, is the

magnifyingpower.
292. The Magnifying Glass.—Fig. 124 shows how a con-

, verging lens may be employed

to magnify small objects. The
point a of an object just inside

the principal focus F of the lens

" ^ is the origin of light-waves

which, after passing through the

lens, are changed to waves hav-

ing a centre a' (§ 282) which,

when the lens is properly ad-

FiG. 134. ' justed, is at the distance of dis-

tinct vision. Waves coming from b enter the eye as though

from b'. The object is therefore distinctly seen, but under a

visual angle a'Ob', while, to be seen distinctly by the unaided

eye, it must be at the distance

Oa", when the angle subtended

is a"Ob". The ratio of these an-

gles is very nearly that of Oa"
to OF. Hence the magnifying

power is the ratio of the distance

of distinct vision to the focal

length of the lens.

293. The Compound Mi-

croscope.—A still greater mag-

nifying power may be obtained

by first forming a real enlarged image of the object (§ 284) and

using the magnifying glass upon the image, as shown in Fig. 125.
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1

The lens A is called the objective, and E is called the eye-lens or

ocular. As will be seen in § 310, both A and E often consist of

combinations of lenses for the purpose of correcting aberration.

294. Telescopes.—If a lens or mirror be arranged to pro-

duce a real image of a distant object, either on a screen or in

the .air, we may observe the image at the distance of distinct

vision when the visual angle for the object is enlarged in the

ratio of the focal length of the lens to the distance of distinct

vision. This will be plain from Fig. 126. Suppose the nearest

Fig. 126.

point from which the object can be observed by the naked

eye to be the centre of the lens O. The visual angle is then

AOB = aOb, while the visual angle for the image is aEb.

Since these angles are always very small, we have

aEb _ Oc

aOb ~ Ec

very nearly. But when AB is at a great distance, Oc is the

focal length of the lens. By using a magnifying glass to ob-

serve the image, the magnifying power may be still further

increased in the ratio of the distance of distinct vision to the

focal length of the magnifying glass. The magnifying power

of the combination is therefore the ratio of the focal length of

the object-glass to the focal lengl^h of the eye-glass. A con-

cave mirror may be substituted for the object-glass for produc-

ing the real image.



CHAPTER III.

VELOCITY OF LIGHT.

295. Velocity Determined from Eclipses of Jupiter's

Moons.—Roemer, a, Danish astronomer, was led to assume a

progressive motion for light in order to explain some apparent

irregularities in the motions of Jupiter's satellites. A few ob-

servations of one of Jupiter's moons are sufficient to determine

the time of its eclipses for months in advance. If these observa-

tions be made when the earth and Jupiter are on the same side

of the sun, and the time of an eclipse occurring about six months
later, predicted from them, be compared with the observed time

of that eclipse, it is found that the observed time is about l6|-

minutes later than the predicted time. This discrepancy is

explained if it is assumed that light has a progressive motion

and requires i6f minutes to cross the earth's orbit, for the dis-

tance of the earth from Jupiter in the second case is about the

diameter of its orbit greater than in the first.

296. Aberration of the Fixed Stars.^The apparent direc-

tion of the light coming from a star to the earth, that is, the

apparent direction of the star from the earth, is the. resultant of

the motion of the light and the motion of the earth. As the

motion of the earth changes direction the apparent direction of

the star will change also, and the amount of that change will

depend on the relation betuveen the velocity of light and the

change in the velocity of the earth in its orbit, understanding

by change of velocity change in direction as well as in amount.

This apparent change in the position of the stars is called aberra-
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tion. Knowing its amount corresponding to a known change

in the earth's motion, we may compute the velocity of light.

This method was first employed by Bradley.

297. Fizeau's Method'.—Several methods have been em-

ployed for measuring the velocity of light by determining the

time required for it to pass over a small distance on the earth's

surface. In the form of experiment devised by tizeau, a beam
of light is allowed to pass out through a small hole in the shut-

ter of a darkened room to a distant station where it is reflected

back on itself. It returns through the opening and produces

an image of the source. A toothed wheel is placed in front of

the opening in such a position that, to pass out or back, the

light must pass through the spaces between the teeth. If the

wheel revolve slowly, as each space passes the opening in the

shutter light will pass out, and returning from the distant sta-

tion will enter through the space by which it made its exit. An
image of the source will therefore be visible whenever a space

passes the opening, and in consequence of the persistence of

vision this image will appear continuous.
,
Since it takes time

for ,the light to go to the distant station and back, it is possible

to give to the wheel such a velocity that when the light which

passed out through a given space returns, it will find the ad-

jacent tooth covering the opening, so that no image of the

source can be seen. If the velocity of rotation be sufficiently

increased, the linage again comes into view when the light can

enter through the space following that by which it emerged.

A still further increase of velocity may cause a second extinc-

tion of the image. The experiment consists in determining ac-

curately the velocities for which the several extinctions and reap-

pearances of the image occur. A high degree of accuracy can-

not be attained because the extinction of the image is not sud^

den. It disappears by a gradual fading away, and reappears by

a gradual brightening. For quite a range of velocity the image

cannot be seen at all.

38
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298. Foucault's Method.—Foucault's method depends

. upon the use of the revolving nairror as a means of measuring a

very small interval of time. Foucault's experiments were re-

peated with some modification by Michelson in 1879 ^'^^ again

in 1882. The general theory of the experiment may be under-

stood from the following brief description. Let S (Fig. 1 27) be

a narrow slit, m a mirror which may revolve about an axis in

its own plane, L a lens, and m' a second mirror. Light from

a source behind 6' passes through the , slit, falls on m, is re-

flected, when »« is in a suitable position, through the lens Z,

>

' Fig. 127.

and forms an image at S'. S and S' are conjugate foci of the

lens, and by so placing the lens that 5 shall be a little beyond
the principal focus, S' may be removed to as great a distance

as desired. The mirror m! is perpendicular to the axis of the

lens, and at such a distance that the image S falls upon its

surface. It is evident that any light reflected back from m'
through L will return to the conjugate focus S, whatever the po-

sition of the mirror m' , so long as it sends the light in such a di-

rection as to pass through L both going and returning. If now
the mirror m be given a rapid rotation clockwise, light passing

through L will return to find mm 3. changed position, and the

image will be displaced from 5 to some point S" to the left of

5'. Knowing the displacement SS" and the number of rotations

of the mirror per second, the time required for light to pass

from m to S and back is determined. The value of the velocity
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-of light, as determined by Michelson in 1879, is 299,910, and in

1882, 299,853, kilometres per second.

299. Influence, upon the Velocity of Light, of the Motion
of the Medium through which it Passes.—Fizeau showed by

experiment in 1859 that a moving transparent body increases

or diminishes the velocity of light passing through it, not by its

•own velocity, but by a fraction of its own velocity, expressed

«" — I /. .

by ~—, where n is the index of refraction. This result was
n

confirmed by experiments of Michelson and Morley in 1 886.

The result follows if we suppose the change of velocity of light

in a medium to be due solely to change of density of the ether.

Remembering that the velocity of propagation of wave motion

in any medium is i/ = y — , and that the velocity in a medium

of which the index of refraction is n, is -th as great as that in

a vacuum, it may be seen at once that the density of the ether

A C E D

Fig. 128.

in such a medium must be «" times as great as that in a vacuum.

In Fig. 128 let AC he a. body, o."'which the index of refraction is

n. Let the body move forward so as to occupy the position

CD. The ether occupying the space CD and having a density

I must in the body have a density n', and hence must occupy a

space ED, which is — times CD. The ether in AC must, there-

fore, move forward through a distance C£, while the body

moves through a distance CD. But CE equals CD X ^i — -
j)

^» J

or CD X 5—. Hence the ratio of the velocity of the ether
n

^ . I

to the velocity of the body is 5

—

.



CHAPTER IV.

INTERFERENCE AND DIFFRACTION.

300. Interference of Light from Two Similar Sources.-^

It has already been shown that the disturbance propagated to

any point from a luminous wave is the algebraic . sum of the

disturbances propagated from the various elements of the wave.

The phenomena due to this composition of light-waves are

called interference phenomena.

Let us consider the case in which two elements only are

Fig. 129.

'''
'

efiticient in producing the disturbance. Let A and B (Fig. 129)

represent two elements of the same wave surface separated

by the very small distance AB. The disturbance at m, a point

on a distant screen mn, parallel with AB, due to these two ele-

ments, is the resultant of the disturbances due to each sepa-

rately. The light is supposed to be homogeneous, and its wave

length is represented by A..

When the distance mB — inA equals fA, or any odd multiple

of l-A, there will be no disturbance at m. Take mC = mB, and

draw BC. mCB is an isosceles triangle ; but since AB is very
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small compared to Om, the angle at C may be taken as a right

angle; the triangle ACB, therefore, is similar to Osm, and we
have

AB Om Os
-Ty=. =— =— very nearly.AC sm sm ^ '

Represent sm by x, Os by c, AB hy b, AChy nX i^,, where n
is any number. Then we have

^ =V- ("5)

If n be any even whole number, the values of x given by this

equation, represent points on the screen mn at which the waves

from A and B meet in the same phase and unite to produce

light. If n be any odd whole number, the corresponding values

of X represent points where the waves meet in opposite phases,

and therefore produce darkness. It appears, therefore, that

starting from s, for which w = o, we shall have darkness at dis-

tances

b ' b ' ^
'^*^''

^Xc p-c jpu

\

and light at distances

Xc 2\c ^Xc
o, -y, -^,

-J-,
etc.

From Eq. (115), we have

2bx
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Since \iih. is the number of wave lengths that the wave front

•from B falls behind that from A, ^nT, where /'represents the

period of one vibration, is the time that must elapse after the

wave from A produces a certain displacement before that from

B produces a similar displacement. The expression

—^— = nn:

is, therefore, the difference in epoch of the two wave systems.

Substituting ttTt for e in Eq. (9), we have

„
,

, , ,, /2?r# , sin uTt \

o = J + J, = fl(2+ 2 cos n7[)i cos —^ tan ~^-^,
],

' ' ^
'

'
\

7^
I + COS njTj,

Now the intensity of light for a vibration of any given period

is proportional to the energy of the vibratory motion. It is,

therefore proportional to the square of the maximum velocity,yf

and this is proportional to the square of the amplitude. To-

find the relative intensities of light at different points, we may
suppose t in the second parenthesis above to have such a value-

as shall render the cosine unity, when

6' 2= a(2 -|- 2 cos tiTty = A

is the amplitude of the vibratory motion for any given value of

n. Substituting for n its value and squaring, we have

A^ = a^\2 -\- 2 cos —T-'^'jj

in which A" is proportional to the intensity of the illuminatioifc

at distamces x from s. When

2bx
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its cosine is i, and A' is a maximum and equal to 4^'. As x
increases A^ diminishes, until

—=r-;r = n, in which case A^ = o.

A^ then increases until it becomes again a maximum, when

2bx

ck
n = 2n.

In short, if AB (Fig. 130) represent the line mn of Fig. 129, the

ordinates to a sinuous curve like abc will represent the intensi-

ties of the light along that line.

The phenomena described above may be realized experi-

mentally in several ways. Young admitted sunlight into a

J g darkened room throXJgh a small hole

/\ /\ r\ /\ /\ in a window-shutter. It fell upon

A

—

B a screen in which were two small
^'°- '3°- holes close together, and, on passing

through these, was received upon a second screen. Light and

dark bands were observed upon this screen, the distances of

which from the central barid were in accordance with theory.

Fresnel received the light from a small luminous source upon,

two mirrors making.a very large angle, as in Fig. 131, The light,

reflected from each mirror proceed-

ed as though from the image of the

seurce produced by that mirror.

The reflected light, therefore, con-

sisted of two wave systems, from

two precisely similar sources A and

B. Light and dark bands were

formed in accordance with theory. In order that .the experi*

ment may be successfully repeated reflection must take place

s
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from the front surface of each mirror only, the angle made by
the mirrors must be nearly 180°, and the reflecting surfaces

must meet exactly at the vertex of the angle.

Two similar sources of light may be obtained

als5 by sending the light through a double

prism, as shown in Fig. 1 32. Light from A
proceeds after passing through the prism as

from the two virtual images a and a'

.

A divided lens, Fig. 133, serves the same purpose., The light

from A is concentrated in two real images a and a! , from which
proceed two wave systems as in the previous cases. What are

really seen in these cases, when the source of light is white, are

iris-colored bands instead of bands of light and darkness merely.

Fig. 132.

Fro. 133.

When the light is monochromatic,, the bands are simply alter-

nations of light and darkness, the distances between them being

greatest for red light, and least for blue. From Eq. (i i S) it ap-

pears that, other things being equal, x varies with A,, hence we
must conclude that the greater distance between the bands in-

dicates a greater- wave length; that is, that the wave length of

red light is greater than that of blue.

301. Measurement of Wave Lengths.—Data may be ob-

tained from any of the above experiments for the determination

of the wave length of light. From Eq. (115) we have

A.=
2bx

en
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where c, b, and x are distances to be measured. The distance

X is the distance from j to a point w«, the centre of a light band,

and n equals twice the number of dark bands between s and m.

It is not necessary to consider the details of the apparatus, and

the adjustments necessary for making these measurements. It

is sufificient to show, in a general way, how the distance x can

be measured. Instead of a screen, a lens or combination of

lenses, called a positive eyepiece, is placed in the path of the

light, and the observer looks through it towards the luminous

source. This eyepiece has a spider-line stretched in front of it,

which is seen magnified when the bands are observed, and lens

and spider-line are arranged to be moved laterally by a microm-

eter screw. By this movement the spider-line may be brought

to coincide with the baiids in succession, and the. distances

measured by the number of revolutions of thre screw. Better

methods than this of measuring wave lengths will be found de-

scribed in § 306.

302. Interference from Thin Films.—Thin films of trans-

parent substances, such as the wall of a soap-,bubble or a film

of oil on water, present interference phenomena when seen in a

strong light, due to the interference of waves reflected from the

two surfaces of the film. Let AA, BB (Fig. 1 34) be the surfaces

of a transparent film. Light falling on AA is partly reflected

and partly transmitted. The reflection at the upper surface

takes place with change of sign (§ 246). The light entering

the film is partly reflected at the lower surface without change of

sign, and returning partly emerges

at the upper surface. It is there

compounded with the wave at ,
that

moment reflected. Let us suppose ^'"^ '3*-

the light homogeneous, and the thickness of the film such that

the time occupied by the light in going through it and return-

ing is the time of one complete vibration. The returning wave

will be in the same phase as the one at that moment entering.
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and, therefore, opposite in phase to the wave 'then reflected-

The reflected and emerging waves destroy each other, or would^

do so if their ampHtudes were equal, and the result is that, ap-

parently, no light is reflected. If the light falling on the film

be white light, any one of its constituents will be suppressed

when the time occupied in going through the film and returning

is the period of one vibration, or any whole number of such

periods, of that constituent. The remaining constituents ' pro-

duce a tint which is the apparent color of the film.

Similar phenomena are produced by the interference of that

portion of the incident light which is transmitted direetly through

the film, with that portion which is transmitted after undergoing

an even number of internal reflections. Since these reflections

occur without change of sign, the thickness of the film for which

the reflected light is a minimum is that for which the transmit-

ted light is a maximum.
Newton was the first to study these phenomena. He placed

a plane glass plate upon a convex lens, of long radius, and thus

formed between the two a film of air, the thickness of which

f ,——,
^^ ''•^y point could be determined

j,
--^ when the radius of the sphere and

the distance from the point of con-

tact were known. With this ar-

rangement Newton found .a, black

spot at the point of contact, and

surrounding this, when white light

was used, rings of different colors.

When homogeneous light was used.

Fig- '35- the rings were alternately light and

dark. Let ab (Fig. 135), be the radius of the first dark ring, and

denote it by d. The thickness be = ef, which may be denoted

by X, is

d'
X = .

2r — X



'303] INTERFERENCE AND DIFFRACTION. 443

Since x is very small in comparison with 2r, this becomes

X = —

.

2r

This distance for the first dark ring, 'tvhen the incident light is

normal to the plate, is equal to half the wave length of the light

experimented upon. Newton found the thickness for the first

dark ring
^ , ^^ ^ ^

inches, which corresponds to a wave length of

about, 44^0 fl
inches, or 0.00057 ''^''^- This method affords a

means of measuring the wave lengths of light, or, if the wave

lengths be known, we may determine the thickness of a film at

any point.
'

303. Effects Produced by Narrow Apertures.—It has

been seen (§ 274), that cutting off a portion of a light-wave by

means of screens, thus leaving a narrow aperture for the pas-

sage of the light, prevents the interference which confines th^

light to straight lines, and gives rise to a luminous disturbance

within the geometrical shadow. This phenomenon is called

diffraction. Let us consider the aperture perpendicular to

the plane of the paper, and an approaching plane wave

parallel to the plane of. the' aperture. Let AB (Fig. 136]

represent tbe aperture, and mn one position of the approach-

ing wave. To determine the effect ^
at any point we must consider the

elementary waves proceeding fromv

the various points of the wave front

lying between A and B. .
First con-

sider the point P on the perpendicular

to AB at its middle point. AB is so

small that the distances from P to each

point of AB may be regarded as equal,

or the time of passage of the light from

each point of AB to P may be made

ACS
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AcB

Fig, 137.

the same, by placing a converging lens of proper focus between

AB and P. Then all the elementary waves from points of AB
meet at P in the same phase, and the point P is illuminated.

Now consider a second point, /", in an oblique

direction from C, Fig. 137, and suppose the

obliquity such that the time of passage from

B to P' is half a vibration period less than the

time of passage from C tp P, and a whole

vibration period less than the time of passage

from A to P . Plainly the elementary waves

from B and C will meet atP in opposite phases,

and every wave from a point between B and C
will meet at P a wave in the opposite phase from some point

between Cand A. The point P is, therefore, not illuminated.

Suppose another point, P' (Fig. 1 38), still further from P, such

that .(4^ may be divided into three equal parts, each of which is

half a wave length nearer P' than the adjacent part. It is plain

that the two parts Be and ca will annul each

other's effects at P", but that the odd part

Aa will furnish light. At a greater obliq-

uity,AB may be divided into four parts, the

distances of which from the point, takpn in

succession, differ by half a wave length.

There being an even number of these parts,

the sum of their effects at the point will be

zero. Now let us suppose the point P to

occupy successively all positions to the

right or left of the normal. While the line joining P with

the middle of the aperture is only slightly oblique, the ele-

mentary waves meet at P in nearly the same phase, and

the loss of light is small. As P approaches P' (Fig. 137), more

and more of the waves meet in opposite phases, the light

grows rapidly less,'" and at P' becomes zero. Going beyond /"

Fig. 138.
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the two parts that annul each other's effects no longer occupy^

the whole space AB, some of the points of the aperture send

to P waves that are not neutralized, and the light reappears,

Igiving a second maximum, much less than the first in intensity.

Beyond this the light diminishes rapidly in intensity until a

point is reached where the paths differing by half a wave length

divide AB into four parts, when the light is again zero. Theo-

retically, maximum and minirtium values alternate in this way,

to an indefinite distance, but the s'uccessive maxima decrease so

rapidly that, in reality, only a few bands can be seen.

3P4. Effect of a Narrow Screen in the Path of the

Light.—It can be shown that the effect of a narrow screen is

the complement of that of a narrow aperture ; that is, where a

narrow aperture gives light, a screen pro-

duces darkness. Let mn (Fig. 139) be a plane

wave and AB a surface on which the light

falls. If no obstacle intervene, the surface

AB will be equally illuminated. The illumi-

nation at any point C is the sum of the effects

of all parts of the wave mn. Let the effects

due to the part of the wave op be represented Fig. 139.

by / and that due to all the rest of the wave by /'. Then the

illumination at C" is /+ /', equal to the general illumination on

the surface. ' Let us now suppose mn to be a screen arid pa a

' narrow aperature in it. If the illumination at C remain un^

changed, it must be that the parts mo Sindpn of the wave had no

effect, and if, for the screen with the narrow aperture, we substi-

tute a narrow screen atop, there will be darkness at C. If, how-

ever, a dark band fall at C when op is an aperture, a screen at op

;;; will not cut off the light from C. That is, if C be illuminated

when op is an aperture, it will be in darkness when op is a

screen, and if it be in darkness when op is an aperture, it will

be illuminated when op is a screen.
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305. Diffraction Gratings.—Let AB (Fig. 140) be a screen,

having several narrow rectangular apertures parallel and equi-

distant. Such a screen is called ,
^

T grating. Let the approaching waves,

yip^ moving in the direction of the arrow,

//\\>\ be plane and parallel-to AB. Draw
\\\^^ the parallel lines ab, cd, etc., at such

™^0\\\^ ^" angle that the distance from the

bJ ^\\\. centre of a to the foot of the perpen-

^\ dicular let fall from the centre of the
Fig. 140. adjacent opening on ab shall be equal

to some definite wave length of light. It is evident that an

will contain an exact whole number of wave lengths, co one

wave length less, etc. The line mn is, therefore, tangent to the

fronts of a series of elementary waves which are in the same
phase, and may be ccnsidered as a plane wave, which, if it were

received on a converging lens, would be concentrated to a focus.

If the obHquity of the lines be increased until ae equals 2/1,

3A,, etc., the result will be the same. Let us, however, suppose

that ae is not an exact multiple of a wave-length, but some
fractional part of a wave length, -^T^ for example. Let m
be the fifty-first opening counting from a ; then an will be
j^A, X SO = 49.SA.. Hence the wave from the first opening

will be in the opposite phase to that from the fifty-first. So
the wave from the second opening will be in the opposite phase

to that from the fifty-second, etc. If there were one hundred
opienings in the screen, the second fifty would exactly neutralize

the effect of the first fifty in the direction assumed. Light is

found, therefore, only in directions given by

sin e =
-J, (116)

where « is a whole number, d the angle between the direction of

the light'and the normal to the grating, and d the distance from
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'i iientre to centre of the openings, usually called an element of the

- .grating. Gratings are made by ruling lines on glass at the rate

of some thousands to the centimetre. The rulings may also be

inade on the polished surface of speculum metal, and the san^e

effects as described above are produced by reflection from its

surface. Since the number of lines on one of these gratings is

several thousands, it is seen that the direction of the light is

closely confined to the direction given by the, formula, or, in

other words, light of only one wave length is found in any one

direction. If white light, or any light consisting of waves of

various lengths, fall on the grating, the light corresponding to

•different wave lengths will make different angles with A C, that

is, the light is separated into its several constituents and pro-

"duces 2. pure spectrum. Since different values of n will give

•different values of d for each value of A, it is plain that there

will be several spectra corresponding to the several values of n.

When n equals i the spectrum is of \!a.& first order ; when n equals

2 the spectrum is of the second order, etc. The grating fur-

nishes the most accurate and at the same time the most simple

method of determining the wave lengths of light. Knowing

the width of an element of the grating it is only necessary to

measure Q for any given kind of light.

In this discussion it has been assumed that the light was

;;? normal to the surface of the grating. This need not be the

case. Let AB (Fig. 141) be the intersection with the paper of a

reflecting grating supposed perpen-

dicular to it, mn an approaching

wave front also perpendicular to

the paper, and m"n" the reflected

wave front constructed as in § 278.

The line m"n" is a tangent to all

"the elementary waves that origi-

nate in the surface AB in conse- fig. 141.

quence of disturbances produced by the passage of the wave
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m'n'. The surface AB consists of a number of narrow, equidis-

tant, reflecting surfaces separated by roughened channels. If the

reflecting surfaces be considered infinitely narrow, each of them
will be the centre of a system of waves due to the successive in-

cident waves similar to mn which fall upon them. Since the

number of the elements of the grating is finite there will be a

finite number of such wave systems. In the diagram one of

these systems is represented about the centre d. Let us repre-

sent by a, b, c, d, etc., the centres of, these systems, such that

the distances m"a, ab, be, cd, etc., are elements of the grating.

Let us supposethe wave systems ah represented, and draw

m"n"' tangent to the wave front of which the centre is a, and

which is one wave length behind the wave to which m"n" is

tangent. The line m"n"' will be also tangent to waves of the

systems of which b, c, d, etc., are the centres, and which are

respectively two, three, four, etc., wave lengths behind the

wave to which m" n" is tangent. These elementary waves,

differing by successive periods, are all in the same phase, and

m"n"' may, therefore, be considered as constituting; a plane

wave front in which light of one particular wave length is pro-

pagated in the direction dx. Represent by i the angle of inci-

dence, by r the angle of reflection, by a the angle between

the normal, to the grating and the pathof the diffracted light.

Then i equals r, and if m"a equal s, the radius of the elemen-

tary wave having its centre at a, and tangent to ni"n" , is s sin i,

and of the elementary wave having the same centre, and tan-

gent to m"n"', is s sin a. Hence, by hypothesis, we have

s sin i — s sin « = A.

Let us designate by j^ the angle between the path of the in-

cident and that of the diffracted light, and by 6 the angle be-

tween the path of the reflected and that of. the diffracted, light,

,

If the grating be turned so that the path of the reflected light
n

coincides with dx, its normal will turn through the angle - and
* 2
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* B Q R fi

will bisect the angfle/J. Hence we have ^ =—
\
— , and a =— .° 22 22

Substituting these values in the equation for A. we obtain

A = 2s cos - sm —

.

(117)2.2 ^ ''

Hitherto the spaces from which the elementary waves pra-

ceed have been considered infinitely narrow, so that only one

system of waves from each space need be considered. In prac-.

tice, these spaces must have some width, and it may happen

that the waves from two parts of the same space may cancel

each other. Let the openings. Fig. 142, be equal in width to,

the opaque spaces, and let the direction am be

taken such that ae equals 2 X. Then «/ equals

^X, or the waves from one half of each opening
"f

are opposite in phase to those from the other

half, and there can be no light in the direction

am. In general, if d equal the width of the

opening, there will be interference and light

will be destroyed in that direction for which fis. 142.

sin 6 — —, if the incident light be normal to the grating. Let
d

/represent the width of the opaque space. Then d -\- f = s,

and light occurs in the direction given by sin 6 = -—- pro-

vided that the value of 6 given by this equation does not

satisfy the first equation also.

If d equal /, we have

. nX- nX

d-\-f 2d

When « is even, sin B becomes

2X X 4A. 2X

29
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and satisfies the equation

• a ^^

which expresses the condition under which light is all de-

stroyed. Hence in this case all the spectra of even orders fail.

Moreover, the spectra after the first are not brilliant. Whenf
equals 2d the spectrum of the third order fails.

It may be shown that whatever be the relative widths of

the transparent and opaque spaces, one may be substituted for

the other without altering the result. In Fig. 143 let ac rep-

resent an opening and cd an opaque por-

tion. Let us assume that cd equals ^ac,

and let ab be the path of the diffracted

light giving the spectrum of the first order;

then we have ae = X and ae' = JA.. Now
let ac become the opaque portion and cd

the opening. We will then have ik = ^X.

Fig. 143. Each of the elementary waves from points

between c and z will be half a wave length behind a correspond-

ing wave from some point between d and j, so that the waves

coming from ci and dj annul one another, and tj is the only

efficient portion of the opening cd. This portion i; is equal to

the former opening ac. Since the effect of the grating is that

of one opening multiplied by the number of openings, it is

plain that in this case it is indifferent whether the openings,are

of the width ac or cd.

306. Measurement of Wave Lengths.—To realize prac-

tically the conditions assumed in the theoretical discussion of

the last section, some accessory apparatus is required. It has

been assumed that the wave incident upon the grating was

plane. Such a wave would proceed from a luminous point or

line at an infinite distance. In practice it may be obtained by
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illuminating a very narrow .slit, taking it as the source of light,

and placing it in the principal focal plane of a well-corrected

converging lens. The plane wave thus obtained passes through

the grating, or is reflected from it, and is received on a second

lens similar to the first, which gives an image either on a screen

or in front of an eyepiece, where it is viewed by the eye. The
general construction ' of the apparatus may be inferred from

Fig. 144. It is called the spectrometer.

A\%2l tube carrying at its outer end the slit and at its inner

end the lens, called a collimating

lens. CD is a horizontal graduated

circle, at the centre of which is a

table on which the grating is

mounted, and so adjusted that the

a3fis of the circle lies in its plane

and parallel to its lines. In using

a reflecting grating the collimating

and observing telescopes may be

fixed at a constant angle with each

other which may be determined once for all in making the ad-

justments of the instrument. This angle is the angle yS of

§305. To determine this angle the grating is turned until

light thrown through the observing telescope upon the grating

is reflected back on itself. The position of the graduated circle

is then read. The difference between this reading and the

reading when the grating is in such a position that the reflected

image of the slit is seen in the telescope is the angle -. If the

grating be now turned until the light of which the wave length

is required is observed, the angle through which it is turned

from its last position is the angle -. If the width of an element

of the grating be known, these measurements substituted in

Eq. 117 give the value of A.

Fig. 144,
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Wave lengths are generally given in terms of a unit called a

tenth metre; that is, i metre X io~'°. The wave lengths of

the visible spectrum lie between 7500 and 3900 tenth metres.

Langley has found in the lunar radiations wave lengths as long

as 170,000 tenth metres, and Rowland has obtained photo-

graphs of the solar spectrum in which are lines representing

wave lengths of about 3000 tenth metres.

Instead of the arrangement which has been described,

Rowland has devised a grating ruled on a concave surface, and

is thus enabled to dispense with the collimating lens and the

telescope.

307. Phenomena due to Diffraction.—The colors exhibited

by mother-of-pearl are due to diffraction effects produced by

the striated surface. Luminous rings are sometimes seen closely

surrounding the sun or moon, due to small globules of vapor

or particles of ice in the upper atmosphere. Similar rings may
be seen by looking at a small luminous source through a plate

of glass strewn with lycopodium powder.



CHAPTER V.

DISPERSION.

308. Dispersion.—When white light falls upon a prism of

any refracting medium, it is not only deviated from its course

but separated into a number of colored lights, constituting an

image called a spectrum. These merge imperceptibly from one

into another, but there are six markedly different colors : red,

orange, yellow, green, blue, and violet. Red is the least and

violet the most deviated from the original course of the light.

Newton showed by the recomposition of these colors by means

of another prism, by a converging lens, and by causing a

disk formed of colored sectors to revolve rapidly, that these

colors are constituents of white light, and are separated by
the prism because of their different refrangibilities. To arrive

at a clear understanding of the formation of this spectrum,

let us suppose first a small source of homogeneous light L
(Fig. 145). If this light fall on a converging lens from a point

Fig. 145.

at a distance from it a little greater than that of the prin-

cipal focus, a distinct image of the source will be formed at the

distant conjugate focus /. If now a prism be placed in the

path of the light, it will, if placed so as to give the minimum
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deviation, merely deviate the light without interfering with the

sharpness of the image, which will now be formed at /' instead

of at /. If the source L give two or three kinds of light, the

lens may be so constructed as to produce a single sharp image

at / of the same color, as the source, but when the prism is in-

troduced the lights of-different colors will be differently deviated

and two or three distinct images will be found near /'. If there

be many such images, some may overlap, and if there be a great

number of kinds of light varying progressively in refrangibility,

there will be a great number of overlapping images constituting

a continuous spectrum.

309. Dispersive Power.—It is found that prisms of dif-

ferent substances giving the same mean deviation of the light

deviate the light of different colors differently, and so produce

a longer or shorter spectrum. The ratio of the difference be-

tween the deviations of the extremities of the spectrum to the

mean deviation may be called the dispersive power of the sub-

stance. Thus if d' , d" represent the extreme deviations, and d
, . . ',. . . d'-d"

the mean deviation, the dispersive power is -j—

.

T „ ^ , ,
.sin Arx

In § 279 we find the equation —.—^—
'
= /*> ^^^ referring to

sin jcixr

Fig. 108 we may set sin Arx ^ sin {Axr -\- xAr). From the

discussion of § 279 it appears that when the prism is in the

position of minimum deviation, the angle Axr equals half the

refracting angle of the prism, or— , and the angle xAr equals

d
half the deviation, or -. Hence we obtain

2

. A-[-d
sin

/*
= ^; (118)

sin —
2
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2
or when /4 is small, /t =

A '

2

from which d=A{jJi— i).

Hence we obtain

d' - d" _ Ajjji! - I) - A{fi" - I) _ fi' ^ fii'

d ~ A{m — i)
~

f*
— i

'

where fi' and jn" are the refractive indices for the extreme

colors, and /< the index for the middle of the spectrum.

310. Achromatism.—If in Newton's experiment of recom-

position of white light by the reversed prism the second prism

be of higher dispersive power than the first, and of such an

angle as to effect as far as possible the recomposition, the light

will not be restored to its original direction, but will still be

deviated, and we shall have deviation without dispersion.

This is a most important fact in the construction of optical

instruments. The dispersion of light by lenses, called chromatic

aberration, was a serious evil in the early optical instruments,

and Newton, who did not think it possible to prevent the dis-

persion, was led to the construction' of reflecting telescopes to

remedy the evil. It is plain, however, from

what has been said above, that in a combina-

tion of two lenses of different kinds of glass,

one converging and the other diverging, one

may correct the dispersion of the other within

certain limits, while the combination still acts

as a converging lens forming real images of fig. 146.

objects. Fig; 146 shows how this principle is applied to the
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correction of chromatic aberration in the object-glasses of tele-

scopes.

Thus far nothing has been said of the relative separation of

the different colors of the spectrum by refraction by different

substances. Suppose two prisms of different substances to

have such refracting angfes that the spectra produced are of the

same length. If these twp spectra be superposed, the extreme

colors may be made to coincide, but the intermediate colors do

not coincide at the same time for any two substances of which

lenses can be made. Perfect achromatism by means of lenses

of two substances is therefore impossible. In practice it is

usual to construct an achromatic combination to superpose, not

the extreme colors, but those that have most to do with the

brilliancy of the image.

The indistinctness due to chromatic aberration, existing

even in the compound objective, may be much diminished by

a proper disposition of the lenses of the eyepiece. Fig. 147

shows the negative or Huyghens eyepiece.

Let A be the objective of a telescope or microscope. A

Fig. 147.

point situated on the secondary axis ov would, if the objective

were a single lens, have images on that axis, the violet nearest

and the red farthest from the lens. If the lens could be per-

fectly corrected, these images would all coincide. By making

the lens a little over-corrected, the violet may be made to fall

beyond the red. Suppose r and v to be the images. B and C
are the two lenses of the Huyghens eyepiece. B is called the

field-lens, axidi. is three times the focal length of C. It is placed
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between the objective and its focal plane, and therefore prevents

the formation of the images rv, but will form images at r'v' on

the secondary axes o'r, o'v. If everything is properly propor-

tioned, r'v' will fall on the secondary axis o"R of the eye-lens

C at such relative distances as to produce one virtual image at

RV. It will be noted that the image / is smaller than would

have been formed by the objective.

The magnifying power of the in-

strument is therefore less than it

would be if the lens C were used

alone as the eyepiece. This loss

of magnifying power is more than

counterbalanced by the increased

distinctness.

Fig. 148 shows the Ramsden or fig. 148.

positive eyepiece. The aid it gives in correcting the residual

errors of the objective is evident from the figure.

311. The Rainbow.—The rainbow is due to refraction and

dispersion of sunlight by drops of rain. The complete theory of

the rainbow is too abstruse to be given

here, but a partial explanation may be

given. Let O, Fig. 149, represent a

drop of water, and SA the paths of the

incident light from the sun. The light

enters the drop, suffers refraction on

entrance, is reflected from the interior

surface near B, and emerges near C, as a

wave of double curvature of which mn
may be taken as the section. Of this wave the part near/, the

point of inflection, gives the maximum effect at a distant point,

and if the eye be placed in the prolongation of the line CE per-

pendicular to the wave surface, light will be perceived, but at

a very little distance above or below CE there will be darkness.

The direction CE is very nearly that of the minimum deviation
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produced by the drop with one internal reflection. It is also

the direction in which the angle of emergence equals the angle

of incidence. The direction CE corresponds to the minimum
deviation for only one kind of light. If this be red light, the

yellow will be more deviated, and the blue still more. To see

these colors the eye must be higher up, or the drop lower down.

If the eye remain stationary, other drops below will send to

it the yellow and blue, and other colors of the spectrum. Since

this effect depends only on the angle between the directions SA
and CE, it is clear that a similar effect

will be received by the eye at E from

all drops lying on the cone swept out

by the revolution of the line CE and

all similar lines drawn to the drops
Fig. 150. above and below the drop O, about an

axis drawn through the sun and the eye, and hence parallel to

SA. This cone will trace out the primary rainbow having the

red on the outer and the blue on the inner edge. The secondary

bow, which is fainter, and appears outside the primary, is pro-

duced by two reflections and refractions as shown in Fig. 150.

312. The Solar Spectrum.—As has been seen (§ 308) solar

light when refracted by a prism gives in general a continuous

spectrum. Wollaston, in 1802, was the first to observe that

when solar light is received upon a prism through a very narrow

opening at a considerable distance, dark lines are seen crossing

the otherwise continuous spectrum. Later, in 1814-15, Fraun-

hofer studied these lines, and mapped about 600 of them. That

these may be well observed in the prismatic spectrum it is im-

portant that the apparatus should be so constructed as to. avoid

as far as possible spherical and chromatic aberrations. The slit

must be very narrow, so that its images may overlap as little as

possible. The most important condition for avoiding spherical

aberration is that the waves reaching the prism should be plane

waves, since all others are distorted by refraction at a plane sur-
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face. Fig. 151 shows the dispositionof the essential parts of the

apparatus known as the spectroscope. S is the slit, which may
be ednsidered as the source of light. C is an achromatic lens,

called a collimating lens, so placed that 5 is in its principal

focus. The waves emerging from it will then be plane. These

will be deviated by the prism, and the waves representing the

different colors will be separated, so that after passing through

the second lens O these different colors will each give a separate

M\^\Alt'i
Fig. 151.

image. These images may be received upon a screen, or ob-

served by means of an eyepiece. Sometimes a series of prisms

is used to cause a wider separation of the different images.

If the images at F be received on a sensitive photographic

plate, it will be found that the image extends far beyond the

visible spectrum in the direction of greater refrangibility, and a

thermopile or bolometer will show that it also extends a long

distance in the opposite direction beyond the visible red. The

solar radiations, therefore, do not all have the power of exciting

vision. Much th^ larger part of the solar beam manifests its

existence only by other effects. It will be shown that, physi-

cally, the various constituents into which white light is separated

by the prism differ essentially only in wave length.

313. Spectrum Analysis.—If, in place of sunlight, the light

of a lamp or of any incandescent solid, such as the lime of the

oxyhydrogen light or the carbons of the electric lamp, illuminate

the slit, a continuous spectrum like that produced, by sunlight

is seen, but the black lines are absent. Solids and liquids give

in general only continuous spectra. Gases, however, when incan-
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descent give continuous spectra only very rarely. Their spectra

are bright lines which are distinct and separate images of the

slit. The number and position of these lines differ with each

gas etnployed. Hence, if a mixture of several gases not in

chemical combination be heated to incandescence, the spectral

lines belonging to each constituent, provided all be present in

sufificient quantity, will be found in the resultant spectrum.

Such a spectrum will therefore serve to identify the constituents

of a mixture of unknown composition. Many chemical com-

pounds are decomposed into their elements, and the elements

are rendered gaseous at the temperatiire necessary for incan-

descence. In that case the spectrum given is the combined

spectra of the elements. A compound gas that do?s not suffer

dissociation at incandescence gives its own spectrum, which

is, in general, totally different from the spectra of its elements.

The appearance of a gaseous spectrum depends in some de-

gree on the density of the gas. When the gas is sufficiently

compressed, the lines become broader and lose their sharply

defined edges, and if the compression be still further increased

the lines may widen until they overlap, and form a continuous

spectrum. Some of the dark lines of the solar spectrum are

found to coincide in position with the bright lines of certain

elements. This coincidence is absolute with the most perfect

instruments at our command, and not only so, but if the bright

lines of the element differ in brilliancy the cprresponding dark

lines of the solar spectrum differ similarly in darkness.

The close coincidence of some of these lines was noted as

early as 1822 by Sir John Herschel, but the absolute coinci-

dence was demonstrated by Kirchhoff, who also pointed out

its significance. Placing the flame of a spirit lamp with a salted

wick in the path of the solar beam which illuminated the slit of

his spectroscope, Kirchhoff found the two dark lines corre-

sponding in position to the two bright lines of sodium to be-

come darker, that is, the flame of the lamp had absorbed from



313] DISPERSION. 461

the more brilliant solar beam light of the same color as it would

itself emit. The explanation of the dark lines of the solar

spectrum is obvious. The light from the body of the sun gives

a continuous spectrum like that of an incandescent solid or

liquid. Somewhere in its course this light passes througlf an

atmosphere of gases which absorbs from the solar beam such

light as these gases would emit if they were self-luminous.

Some of this absorption occurs in the earth's atmosphere, buj;

most of it is known to occur in the atmosphere of the sun

itself. By comparison of these dark lines with the spectra of

various incandescent substances upon which we can experiment,

the probable constitution of the sun is inferred.



CHAPTER VI.

ABSORPTION AND EMISSION,

314. Effects of Radiant Energy.—It has been stated that

the solar spectrum, whether produced by means of a prism or by
a grating, may, under certain conditions, give rise to heat, Hght,

or chemical changes. It was formerly supposed that these

were dne to three distinct agents emanating from the sun, giv-

ing rise to three spectra which were partially superposed.

Numerous experiments show, however, that, at any place in

the spectrum where light, heat, and chemical effects are pro-

duced, nothing which we can do will separate one of these

effects from the others. Whatever diminishes the light at any

part of the spectrum diminishes the heat and chemical effects

also. Physicists are now agreed that all these phenomena are

due to vibratory motions transmitted from the sun, which

differ in length of wave, and which are separated by a prism,

because waves differing in length are transmitted in the sub-

stance of the prism with different velocities. The effect pro-

duced at any place in the spectrum depends upon the nature

of the surface upon which the radiations fall. On the photo-

graphic plate they produce chemical change, on the retina the

sensation of light, on the thermopile the effect of heat. Only
those waves of which the wave lengths lie between 3930 and

7600 tenth metres affect the optic nerve. Chemical changes

and the effects of heat are produced by radiations of all wave

lengths.
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To produce any effect the radiations must be absorbed
; that

is, the energy of the ethereal vibrations must be imparted to

the substance on which they fall, and cease to exist as radiant

energy. The most common effect of such absorption is to gen-

erate heat, and there are some surfaces upon which heat will be

generated by the absorption of ethereal waves of any length.

Langley, by means of the bolometer, has been able to measure

the energy throughout the spectrum, and has shown the exist-

ence of Hnes like the Fraunhofer lines, in the invisible spectrum

below the red. He has demonstrated the existence, in the

lunar spectrum, of waves as long as 170,000 tenth metres, or

more than twenty-two times as long as the longest that can

excite human vision.

315. Intensity of Radiations.—The intensity of radiations

can only be determined by their effects. If the radiations fall

on a body by which they are completely absorbed and con-

T^erted into heat, the amount of heat developed in unit time:

•may be taken as the measure of the radiant energy. Let us

suppose the radiations to emanate from a point equally in all

directions, and represent the total intensity of the radiations by

E. Let the point be at the centre of a hollow sphere, of which

the radius is r, and represent by / the intensity of the radia-

tions per unit area of the sphere. Then, since the surface of

the sphere equals 47rr\ we have

E = 47rrV,

and I=£^. (It9)

That is, the intensity of the radiation upon a given surface

is in the inverse ratio of the square of its distance from the

source.
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Fig. 152.

If the surface is not normal to the rays, the radiant energy

it receives is less, as will ap-

pear from Fig. 152. Let «^ be

a surface the normal to which

makes with the ray the angle

Q ; then ab will receive the

same quantity of radiant en-

ergy as a'b' , its projection on

the plain normal to the ray.

But a'b' equals ab cos ; and

if / represent the intensity on a'b' , and /' the intensity on ab,

we have
/'=/cos(9;

or, the intensity of the radiations falling on a given surface is

proportional to the cosine of the angle made by the surface and

the plane normal to the direction of the rays.

316. Photometry.—The object oi photometry is to compare

the luminous effects of radiations. It is not supposed that the

radiations which fall on the retina are totally absorbed by the

nerves that impart the sensation of light. The luminous

effects, therefore, depend on the susceptibility of these nerves,

and can only be compared, at least when different wave lengths

are concerned, by means of the eye itself. The photometric

comparison of two luminous sources is effected by so placing

them that the illuminations produced by them respectively,

upon two surfaces conveniently placed for observation, appear

to the eye to be equal. If E and E' represent the intensities

of the sources, / and /' the intensities of the illuminations pro-

duced by them on surfaces at distances r and r , the ratio be-

tween these intensities, as was seen in the last section, is

E^

E'r''
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and when / and /'
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317. Transmission and Absorption of Radiations.—It is

a familiar fact that colored glass transmits light of certain colors

only, and the inference is easy that the other colors are ab-

sorbed by the glass. It is only necessary to form a spectrum,

and place the colored glass in the path of the light either

before or after the separation of the colors, to show which

colors are transmitted, and which absorbed. ^

By the use of the thermopile or bolometer, both of which

are sensitive to radiations of all periods of vibration, it is

found that some bodies are apparently perfectly transparent

to light, and opaque to the obscure radiations. Clear, white

glass is opaque to a large portion of the obscure rays of long

wave length. Water and solution of alum are still more

opaque to these rays, and pure ice transmits almost none of

the radiations of which the wave lengths are longer than those

of the visible red. Rock salt transmits well both the luminous

and the non-luminous radiations.

On the other hand, some substances apparently opaque

are transparent tp radiations of long wave length. A plate of

glass or rock salt rendered opaque to light by smoking it over

a lamp is still as transparent as before to the radiations of

longer wave length. Selenium is opaque to light, but trans-

parent to the radiations of longer wave .length. This fact ex-

plains the change of its electrical resistance by light, but not

by non-luminous rays. Carbon disulphide, like rock salt,

transmits nearly equally the luminous and non-luminous rays

;

but if iodine be dissolved in it, it will at first cut off the lu-

minous rays 'of shorter wave length, and as the solution be-

comes more and more concentrated the absorption extends

down the spectrum to the red, and finally all light is extin-

guished, and the solution to the eye becomes opaque. The
radiations of which the wave lengths are longer than those of

the red still pass freely. Black vulcanite , seems perfectly

opaque, yet it also transmits radiations of long wave length.
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If the radiations of the electric lamp be concentrated by means
of a lens, and a sheet of black vulcanite placed between the
lamp and the lens, bodies may be still heated in the focus.

318. Colors of Bodies.—Bodies become visible by the light

which comes from them to the eye, and bodies which are not
self-luminous must becoriie visible by sending to the eye some
portion of the hght that falls on them. Of the light which
falls on a body, part is reflected from the surface; the re-

mainder which enters the body is, in general, partly absorbed,

and the unabsorbed portion either goes on through the body,
or is turned back by reflection at a greater 'or less depth within

the body, and mingles with the light reflected from the sur-

face.

, In general the surface reflection is small in amount, and the

different colors are reflected almost in the proportion in which
they exist in the incident light. Much the larger portion of

the light by which a body becomes visible is turned back after

penetrating a short distance beneath the surface, and contains

those colors which the substance does not absorb. This deter-

mines the color of the object. In a few instances there seems
to be a selective reflection from the surface. For example, the

light reflected from gold-leaf is yellow, while that which it trans-

mits is green.

319. Absorption by Gases.—If a pure spectrum be formed

from the white light of the electric lamp, and sodium vapor,

obtained by heating a bit of sodium or a bead of common salt

in the Bunsen flame, be placed in the path of the beam, two

narrow, sharply defined dark lines will be seen to cross the

spectrum in the exact position that would be occupied by the

yellow lines constituting the spectrum of sodium vapor. Gases

in general have an effect similar to that of the vapor of sodium ;

that is, they absorb from the light which passes through them

distinct radiations corresponding to definite wave lengths, which

ai'e always the same as those which would be emitted by the
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gas were it rendered incandescent. It has been seen already

(§ 313) that the Fraunhofer lines of the solar spectrum are thus

accounted for.

320. Emission of Radiations.—Not only do incandescent

bodies enait radiations, but all bodies at whatever temperature

they may be. A warm body continues to grow cool until it

arrives at the temperature of surrounding bodies, and then if

it be moved to a place of lower temperature, it cools still further.

To this process we can ascribe no limit, and it is necessary to

admit that the body will radiate heat, and so grow cooler, what-

ever its own tetnperature, if only it be warmer than surrounding

bodies. But it cannot be supposed that a body ceases to radiate

heat when it comes to the temperature of surrounding bodies,

and begins again when the temperature of these is lowered. It

is necessary, therefore, to assume that all bodies at whatever

temperature are radiating heat, and that, when any one of them
arrives at a stationary temperature, it is, if no change take

place within it involving the generation or consumption of heat,

receiving heat as rapidly as it parts with it. This is called the

principle of movable equilibrium of temperature. We know that

if a number of bodies, none of which are generating or consum-

ing heat otherwise than in change of temperature^ be placed in

an inclosure the walls of which are maintained at a constant

temperature, these bodies will in time all come to the tempera-

ture of the inclosure. It can be shown that, for this to be true,

the ratio of the emissive to the absorbing power must be the

same for all bodies, not only for the sum total of all radiations,

but for radiations of each wave length. For example, a body

which does not absorb radiations of long wave length cannot

emit them, otherwise, if placed in an inclosure where it could

only receive such radiations, it would become colder than other

bodies in the same inclosure. This is only a general statement of

the fact which has been already stated for gases, that bodies ab-

sorb radiations of exactly,the same kind as those which they emit.
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Since radiant energy is energy of vibratory motion, it may
be supposed to have its origin in the vibrations of the molecules

of the radiating body. In § 156 it was shown that the various

phenomena of gases are best explained by assuming a constant

motion of their molecules. If these molecules should have

, definite periods of vibration, remaining constant for the same

gas through wide ranges of pressure and temperature, this

would fully explain the peculiarities of the spectra of gases.

In § 261 it was seen that a vibrating body may communicate

its vibrations to another body which can vibrate in the same

period, and will lose just as much of its own energy of vibration

as it imparts to the other body. Moreover, a body which has

a definite period of vibration is undisturbed by bodies vibrat-

ing in a period different from its own. This explains fully the

, selective absorption of a gas. For, if a beam of white light

pass through a gas, there are, among the vibrations constituting

such a beam, some which correspond in period to those of thie

molecules of the gas, and, unless the energy of vibration of

these molecules is already too great, it will be increased at the

expense of the vibrations of the same period in the beam of

light. Hence, at the parts in the spectrum where light of those

vibration periods would fall, the light will be enfeebled, and

those parts will appear, by contrast, as dark lines.

In solids and liquids, the molecules are so constrained in

their movements that they do not vibrate in definite periods.

Vibrations of all periods may exist ; but if in a given case there

were a tendency to one period of vibration more than to an-

other, it is evident that the body would transfer to or receive

from another, that is, it would emit or absorb, vibrations of that

period more than of any other. Furthermore, a good radiator

is a body so constituted as to impart to the medium around it

the vibratory motion of its own molecules. But the same pecu-

harity of structure which fits it for communicating its own

motion to the medium when its own motion is the greater, fits
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it also for receiving motion from the medium when its own
motion is the less. Theory, therefore, leads us to the conclu-

sion which experiment has established, that at a given temper-

ature emissive and absorbing powers have the same ratio for

all bodies.

321. Loss of Heat in Relation to Temperature.—The
loss of heat by a body is the more rapid the greater the differ-

ence of temperature between it and surrounding bodies. For-

a small difference of temperature the loss of heat is nearly pro-

portional to this difference. This law is known as Ne-Wton's

law of cooling. For a large difference of temperature the loss

of, heat increases more rapidly than the difference of tempera-

ture, and depends not merely upon this difference, but upon

the absolute temperature of the surrounding bodies. An ex-

tended series of experiments by Dulong and Petit led to a for-

mula expressing the quantity of heat lost by a body in an in-

closure during unit time. It is

e t
•

(2 = ^(1.0077) (1.0077 — 1)>

where B represents the temperature of the inclosure, i the dif-

ference of temperature between the inclosure and the radiating

body, both measured in Centigrade degrees, and in a constant

depending on the substance, and the nature of its surface.

322. Kind of Radiation as Dependent upon Tempera-
ture.—When a body is heated we may feel the radiations from

its surface long before those radiations reiider the body visible.

If we continue to raise the temperature, after a time the body
becomes red hot ; as the temperature rises still further it becomes

yellow, and finally attains a white heat. Even this rough ob-

servation indicates that the radiations of great wave length are

the principal radiations at the lower temperature, and that to

these are added shorter and shorter wave lengths as the tem-
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perature rises. Draper showed that the spectrum of a red-hot

body exhibits no fays of shorter wave length than the red, but

that as the temperature rises the spectrum is extended in the

direction of the violet, the additions occurring in the order of

the wave lengths. At the same time the colors previously

[existing increase in brightness, indicating an increase in energy

iof the vibrations of longer wave length as--those of shorter wave

length become visible. Experiments by Nichols on the radia-

tions from glowing platinum show that vibrations of shorter

wave~ length are riot altogether absent from the radiations of

a body of comparatively low temperature, and he was led to

believe that all wave lengths are present in the radiations from

even the coldest bodies, but are too feeble to be detected.

, With gases, as has been seen, the radiations are apparently

cgnfined to a few definite wave lengths, but careful observa-

tions of the spectra of gases show that the lines are ijiot defined

with absolute sharpness, but fade away, although very rapidly,

into the dark background. In many cases the. existence of ra-

diations may be traced throughout the spectrum, and it is a ques-

tion whether the spectra of gases are not after all contiguous,

only showing strongly marked and sharply defined maxima

where the lines occur. In general, increase of temperature does

not alter the spectra of gases except to increase their intensity,

but there are some cases in which additional lines appear as the

temperature rises, and a few cases in which the spectrum under-

goes a complete change at a certain temperature. This occurs

with those compound gases which suffer dissociation at a cer-

tain temperature, and at higher temperatures giv^ the spectra

of their elements. When it occurs with gases supposed to be

' elements it suggests the question whether they are not really

j

compounds, the molecules of which at the high temperature

iare divided, giving new molecules of which the rates of vibra-

tion are entirely different from those of the original body.
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1 1 323. Fluorescence and Phosphorescence.—A few sub-

stances, such as sulphate of quinine, uranium glass, and thallene,

have the property, when illuminated by rays of short wave

length, even by the invisible rays beyond the violet, of emit^

ting light of longer wave length. Such substances ^x& fluorescent.

The light emitted by them, and the conditions favorable to their

luminosity, have been studied by Stokes. It appears that the

light emitted is of the same character, covering a considerable

region of the spectrum, no matter what may be the incident

light, provided this be such as to produce the effect at all. The
light emitted is always of longer wave length than that which

causes the luminosity.

There is another class of substances which, after being ex-

posed to light, will glow for some time in the dark. These are

phosphorescent. They must be carefully distinguished from

such bodies as phosphorus and decaying wood, which glow in

consequence of chemical action. Some phosphorescent sub"

stances, especially the calcium sulphides, glow for several hours

after exposure.

324. Anomalous Dispersion.—As has been already stated,

there is a class of bodies which show a selective absorption at

their surfaces. The light reflected from such bodies is complex

mentary to the light which they can transmit. Kundt, follow-

ing up isolated observations of other physicists, has shown

that all such bodies give rise to an anomalous dispersion; that

is, the order of the colors in the spectrum formed by a prism

of one of these substances is not the same as their order in the

diffraction' spectrum or in the spectrum formed by prisms of

substances which do not show selective absorption at their

surfaces. Solid fuchsin, when viewed by reflected light, appears

green. In solution, when viewed by transmitted light, it ap-

pears red. Christiansen allowed light to pass through a prism

formed of two glass plates making a small angle with each

other, and containing a solution of fuchsin in alcohol. He
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found that the green was almost totally wanting in the spec-

trum, while the order of the other colors was different from
that in the normal spectrum. In the spectrum of fuchsin the'

colors in order, beginning with the one most deviated, were

violet, red, orange, and yellow. Other substances give rise to

anomalous dispersion in which the order of the colors is dif-

ferent.

In order to account for these phenomena, the ordinary

theory of light is extended by the assumption that the ether

and molecules of a body materially interact upon one another,

so that the vibrations in a light-wave are modified by the vibra-

tions of the molecules of a transparent body through which

light is passing. This hypothesis, in the hands of Helmholtz

and Ketteler, has been sufficient to account for most of the

phenomena of light.



CHAPTER VII.

DOUBLE REFRACTION AND POLARIZATION.

325. Double Refraction in Iceland Spar.—If refraction

take place in a medium which is not isotropic, as has been

assumed in the previous discussion of refraction, but eolo-

tropic, a new class of phenomena arises. Iceland spar is an

eolotropic medium by the use of which the phenomena re'-

ferred to are strikingly exhibited. Ctystals of Iceland spar

are rhombohedral in form, and a crystal may be a perfect rhom-

bohedron with six equal plane faces, each of which is a rhombus.

Fig. 153.

t

Fig. 153 represents such a crystal. At A arid .^are two solid

angles formed by the obtuse angles of three plane faces. The
line through A making equal angles witK the three edges AB,
AE, AD, or any line parallel to- it, is an optic axis of the crys-

tal. ^'J-^**^
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Any plane normal to a surface of the crystal and parallel to

the optic axis is called 2l principalplane. If such a crystal be

laid upon a printed page, the lines of print will, in general, ap-

pear double. If a dot be made on a blank paper, and the crys-

tal placed upon it, two images of the dot are seen. If the crystal

be revolved about an axis perpendicular to the paper, one of

the images . remains stationary, and the other revolves around

it. The images lie in a plane perpendicular to the paper, and

parallel to the line joining the two obtuse angles of the face by

which the light enters or emerges. Thfe entering and emerging

light is supposed in this ,case to be normal to the surfaces of

the crystal. If the crystal be turned with its faces oblique to

the light, the line joining the images will, in certain cases, not

lie .parallel to the line joining the obtuse angles of the faces. If

the distances of the two images from the observer be carefully

noticed it will be seen that the stationary one appears nearer

than the other. If the obtuse angles A and X be cut away,

and the new surfaces thus formed at right angles to the optic

axis be polished, images seen perpendicularly through these

faces do not appear double. By cutting the crystals into prisms

in various ways its indices of refraction may be measured. It

is found that, of the two beams into which light is, in general,

divided in the crystal, one obeys the ordinary laws of refraction,

and has a refractive index 1.658. It is called the ordinary ray.

The other has no constant refractive index, does not in general

lie in the normal plane containing^ the incident ray, and refrac-

tion may occur when the incidence is normal. It is the extra-

ordinary ray. The ratio between the sines of the angles of in-

cidence and refraction varies, for the Fraunhofer line D, from

1.658, the ordinary index, to 1.486. This minimum value is

called the extraordinary index.

326. Explanation of D«uble Refraction.—In § 279 it was

seen that the index of refracti^of a substance is the reciprocal

of the ratio of the velocity dfKght in the substance to its
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velocity in a vacuum. It is plain, then, that the velocity of

light for the ordinary ray of the last section is the same for all

directions, and, if light emanate from a point within the crystal,

the light, following the ordinary laws of refraction, must proceed

in spherical waves about that point as a centre, as iri any singk

refracting medium. The phenomena jJresented by the extra-

ordinary light in Iceland spar are fully explained by assuming

that the velocities in different directions in the crystal are such

as to give a wave front in the form of a flattened spheroid, of

which the polar diameter, parallel to the optic axis, is equal to

the diameter of the ordinary spherical wave, and the equatorial

Fig. 154.

diameter is to its polar diameter as 1.658 is to 1.486. From
these two wave surfaces the path of the light may easily be de-

termined by construction by-i methods already explained in

§ 279, and exemplified in Fig. 1 54, in which ic represents the di-

rection of the incident light, and co and ce the ordinary and
Extraordinary rays respectively.

327. Polarization of the Doubly Refracted Light.—If a

second Crystal be placed in front of the first in any of the ex-

periments described in the last section, there will be seen in

general four images instead of two; but if the second crystal be
turned, the images change in brightness, and for four positions

of the second crystal, ^yhen its principal plane is parallel or at
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right angles to the principal plane of the first, two of the images
are invisible, and the other two are at a maximum brightness.
If one of the beams of light produced by the first crystal be
intercepted by a screen, and the other allowed to pass alone
through the second crystal, the phenomena presented are easily

_
followed. If the principal planes of the two crystals coincide,
only one image is seen. If the second crystal be now rotated
about the beam of light as an axis, a second image at once ap-
pears, at first very faint, but increasing in brightness. The origi-

nal image at the same time diminishes in brightness, and the
two are equally bright when the angle between the principal

planes is 45". If the angle be 90° the first image disappears,

and the second is at its maximum brilliancy. As the rotation is

continued the first image reappears, while the second groWs dim
and disappears when the angle between the principal planes is

180°. These changes show that the light which emerges from
the first crystal of spar is not ordinary light. Another experi-

ment shows this in a still more striking manner. Let the extra-

ordinary ray be cut off by a screen, and the ordinary ray be
received on a plane unsilvered glass at an angle of incidence of

57°. When the plane of incidence coincides with the principal

plane of the spar, the light is reflected like ordinary light. If

the mirror be now turned about the incident ray as an axis,

that is, so turned that, while the angle of incidence remains

unchanged, the plane of incidence makes successively all pos-

sible angles with the principal plane of the crystal, the re-

flected light gradually diminishes in brightness, and when the

angle between the plane of incidence and the principal plane

of the crystal is 90° it fails altogether. If the rotation be con-

tinued it gradually returns to its original brightness, which it

attains when the angle between the same planes is 180°, and

then;,d;injinishes until it fails when the angle is 270°. The ex-

traordinary ray presents the same phenomena except tjbat the

refle<:ted light is brightest when the angle between the planes is



478 ELEMENTARY PHYSICS. [327;

90° and 270°, and fails when that, angle is 0° and 180°. Beams
of light after double refraction present different properties on

different sides, and are said to be polarized. The explanation

must, of course, be found in the character of the vibratory-

motion.

In the polarized beam it is plain that the vibrations must

be transverse ; for if the light were the result of longitudinal

vibrations, or even of vibrations having a longitudinal com-

ponent, it could not be completely extinguished for certain

azimuths of the second crystal or of the glass reflector. The
difference between ordinary and polarized light is explained if

we assume that in bo(:h the vibrations of the ether particles

take place at right angles to the line of propagation of the

wave, and that in ordinary light they occur successively in all

azimuths about that line, and may be performed in ellipses or

circles as well as in straight lines, while ih polarized light they

occur in one plane. In the ordinary ray in Iceland spar the

vibrations are, in a plane at right angles to the optic axis., In

the extraordinary ray they are in the plane containing the optic

v/|axis and the ray. The equation v = \/ -=r holds for transverse

vibrations, if byE be understood the modulus of rigidity of the

medium. If we assume that the modulus of rigidity at right

angles to the optic axis is a minimum, and along the optic

axis a maximum, and varies between these two directions

according to a simple law, all the phenomena of double refrac-

tion and polarization in the crystal are accounted for. If a

crystal be cut so as to present faces parallel to the optic axis,

and if light enter along a normal to one of these faces, the

vibrations, which previous to entering the crystal were in all

azimuths, are resolved in it in two directions, that of great-

est and that of least ela,sticity, or parallel to and at right

angles to the optic axis. The wave made up of vibrations

parallel to the optic axis is propagated with the greater
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velocity. In this case the two wave fronts continue in parallel

planes, and upon emergence cpnstitute apparently one beam
of light. If the incidence be oblique and in, a plane at right

angles to the principal plane, the two component vibrations

are still parallel to and at right angles' to the' optic axis, but
refraction occurs which is greater for the ray of which the
vibrations are in the direction of least elasticity. If the inci-

dence be oblique and in the principal plane, it is eviiient that

there may be a component vibration at right angles to the
optic axis, but the other component, since it must be at right

angles to the ray, cannot be parallel to the optic axis, and
therefore cannot be in the direction of greatest elasticity in

the crystal. The second component is, however, in the direc-

tion of greatest elasticity in the plane of vibration, which direc-

tion is at right angles to the first component. In general, if

a ray of light pass in any direction within the crystal, the line

drawn at right angles to that direction and to the optic axis,

that is, at right angles to the plane determined by the ray and
the optic axis, is in the direction of least elasticity. One of

the component vibrations is in that direction. A line drawn
at right angles to the ray and in , the plane formed by it and

the optic axis is in the direction of the greatest elasticity to

which any vibration giving rise to that ray of light can corre-

spond. In that direction is the second component vibration.

The two component vibrations are therefore always at right

angles. One of the components is always at right angles to

the optic axis, and hence in the direction of least elasticity.

The light resulting from this .component always travels with

the same velocity whatever its direction, and hence suffers re-

fraction on entering the crystal or emerging from it, according

to the ordinary law for single refraction. The other component,

being in the plane containing the ray and the optic axis and at

right angles to the ray, may make all angles with the optic axis

from 0° when it is in the direction of maximum elasticity and is
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propagated with the greatest velocity, to 90° when it is in a direc-

tion in which the elasticity is the same as that -for the other

component, and the entire beam is propagated as ordinary light.

Light for which vibrations occur in all azimuths will, on enter-

ing the crystal, give rise to equal components, but light already

polarized will give rise to components the intensities of which

are determined by the law for the resolutions of motions. When
its own direction of vibration coincides with that of either of

the components, the other component will be zero, and only

when it3 vibrations make an angle of 45° with the compo-

nents can these components be equal. The varying intensi-

ties of the two beams into which a polarized beam is divided

by a second crystal are thus explained.

328. Polarization by Reflection.—Light reflected from a

^ transparent medium is found in

general to be partially polarized,

and for a certain angle of inci-

-v dence the polarization is perfect.

This angle is' that for which the

reflected and refracted rays are at

right angles. In Fig. 155 let xy

represent the surface of a trans-

parent medium, ab the incident, be the reflected, and bd the re-

fracted ray. If the angle cbd=L 90°, we have r+ ^ = 90° also

;

sin i . sin i

Fig. 155.

and since ;< = -.— , we have /< = tan t. Hence the
sin r cos z

angle of complete polarization is given by the equation tan i

= fi. The fact embodied in this equation was discovered by

Brewster, and is known as Brewster's law. The angle of com-

plete polarization is called the polarizing angle. The plane of

incidence is the plane ofpolarization. The vibrations of polar-

ized light are at right angles to the plane of polarization. In

the transmitted ray is an equal amount of polarized light the

vibrations of which are in the plane of incidence.
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If a beam of ordinary light traverse a transparent medium,

in which are suspended minute solid particles, the light which

is reflected from them is found to be partially polarized. The
maximum polarization is found in the light reflected at right

angles to the beam. The plane of polarization of the polarized

beam is the plane of the original beam and the beam which

reaches the eye of the observer.

329. Polariscopes.—In experimenting with polarized light

we need a polarizer to produce the polarized beam, and an

analyzer to show the effects of the polarization. A "piece of

plane glass,, reflecting light at the polarizing angle, is a simple

polarizer. Double refracting crystals, if means be employed

Fig. 156.

to suppress one of the beams into which the light is divided,

are excellent polarizers. Tourmaline is a double refracting

crystal which has the property of being more transparent to

the extraordinary than to the ordinary ray. By grinding plates,

of tourmaline to the proper thickness, the ordinary ray is com-

pletely absorbed, while the extraordinary ray is transmitted.

The best method of obtaining a polarized beam is by the use of

a crystal of Iceland spar in which, by an ingenious device, the

ordinary ray is suppressed, and the extraordinary transmitted.

Fig. 156 shows how this is accomplished. AB is a crystal of

considerable length. It is divided along the plane^5 making

an angle of 22° with the edge AD and perpendicular to a prin-

cipal plane of the face AC. The faces of the cut are polished

and the two halves cemented together again by Canada balsam;

31
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in the same position as at first. In Fig. 157, which is a section

through ACBD of Fig. 156, ab represents the direction of the

light which is incident upon the face AC. It is separated into

the two rays and e. Since the refractive index of the balsam

is intermediate between the ordinary and extraordinary in-

dices of the spar, and since the angle DAB is so chosen that

Fig. 157.

the ray strikes the balsam at an angle of incidence greater

than the critical angle, the ray is totally reflected. The ray

e, on the other hand, having a refractive index in the spar less

than in the balsam, is not reflected, but continues through the

crystal. A crystal of Iceland spar so treated is called a NicoVs

prism, or often simply a Nicol.

The Foucault prism is similai to the Nicol, except that the

two halves after polishing are not cemented together, but are

mounted with a film of air between. The total reflection of

now occurs at a much less angle of incidence. The section AB
is, therefore, much less oblique, and a shorter crystal serves for

the construction of the prism. It will be observed that the

section AB must be so made that the angle of mcidence of o

shall be greater, and of e less, than the corresponding critical

angle. Since the two critical angles are nearly the same, but

little variation in the angle of incidence of and e is permissi-

ble, and the Foucault prism is, therefore, only useful for par-

allel rays.

A pair of Nicol's prisms, mounted with their axis coincid-

ing, serve as a polariscope. The first Nicol transmits a single
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beam of polarized light the vibrations of which are in the prin-

cipal plane. When the principal plane of the second Nicol co-

incides with that of the first this light is wholly transmitted
through it. If the second Nicol or analyzer be turned about
its axis, whenever its principal plane makes an angle with the
direction of the vibrations, these are resolved into two com-
ponents, one in and the bther at right angles to the principal
plane. The latter is reflected to one side and absorbed, and
the former is transmitted. As the angle between the two prin-

cipal planes increases, the transmitted component diminishes
in intensity, until when this angle becomes 90° it disappears
entirely. In this position the polarizer and analyzer are said

to be crossed.

330. Effects of Plates of Doubly Refracting Crystals on
Polarized Light.—If a plate cut from a doubly refracting sur-

face so that its faces are parallel to the optic axis, or at least

not at right angles to it, be placed between the crossed polar-

izer and analyzer, if the principal plane of the plate coincides

-with, or is at right angles to, the plane of vibration, no effect is

perceived. But if the plate be rotated so that its principal

plane makes an angle with the plane of vibration, the motion
may be considered to be resolved into two components, one in,

and the other at right angles to, the principal plane of the

plate, and these two components on reaching the analyzer are

again resolved each into two others, one in, and the other at

right angles to, the principal plane of the analyzer. The vibra-

tions in the principal plane of the analyzer are transmitted,

through it, and hence, in general, the introduction of the plate

restores the light which the crossed polarizer and analyzer had

extinguished. It is easj to see that the restored light will be

most intense when the principal plane of the plate makes an

angle of 45° with the plane of vibratioo of the polarized ray.

It is not to be understood that in the plate there are two

separate beams of light, in one of which one set.of particles is
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vibrating in one plane, and in the other another set in another

plane. What really takes place is that each particle in the

path of the light describes a path which is the resultant of the

two components spoken of above. Let ab. Fig. 1 58, be a plate of

Iceland spar, and cd the direction of its optic axis. Suppose the

path of the light perpendicular to the plane of the paper, and

^to represent the direction of the disturbance produced by the

0, entrance of a plane polarized wave. A motion

in the direction of ef is compounded of two

motions, one along the axis, and the other per-

pendicular to it. In the propagation of this

motion to the. next particle, the motion in the

direction of the optic axis will begin a little

Fig. 158. sooner than that at right angles because of the

greater elasticity in the former direction, and this difference

becomes greater as the light is propagated into the plate. This

is equivalent to a change in the relative phases of two vibra-

tions at right angles, and this causes the path of a vibrating

particle to change from the straight line to an ellipse. The
result is, therefore, that, when the initial disturbance has any
direction except in or at right angles to the principal plane of

the plate, the motion of the vibrating particles within the

plate becomes elliptical, the ellipses changing form as the dis-

tance from the front surface of the plate increases. It is en-

tirely admissible, however, in the discussion of the problem to

substitute for the actual motion its two components, as was
done above.

It remains to consider what is the effect of the retardation

or change of phase of one of the components with respect to

the other. It will be remembered that in the analyzer each ray

from the plate is again resolved into two components, and that

two of these components are in the principal plane of the ana-

lyzer and are transmitted. These two components will evi-

dently differ in phase just as did the two motions from which.
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they were derived, and since they are in the same plane their

resultant is represented by their algebraic sum. If they differ

in phase by half a period their algebraic sum will be zero,

and no light will be transmitted by the analyzer. This will

occur for a certain thickness of the interposed plate. If the

light experimented upon be white, it may occur for some wave

lengths and not for others. Hence, some of the constituents

of white light may fail in the beam transmitted by the analyzer,

and the image of the plate will then appear colored. A study

of the resolution of the vibrations for this case shows that, of

the two beams formed in the analyzer, one contains just that

portion of the light that the other lacks ; hence if the analyzer

be turned through 90°, the image will change to the comple-

mentary color. In Fig. 159, let ab represent the plane of the

vibrations in the polarized ray, and let cd and ef represent

the two planes of vibration of the rays in the in-
^

terposed plate. At the instant of entering the cf^

plate, the primary vibration and its two compo-

nents will have the relation shown in the figure.

The two components are then in the same phase.

As the movement penetrates the plate, one com-

.ponent falls behind the other, and the relation of

their phases changes, until, with a retardation of ^'°' '^*

one wave length, the phases are again as in the figure. Sup-

pose the thickness of the plate such that this retardation occurs

for some constituent of white light. After leaving the plate

the relative phases of the components remain unchanged and

the constituent in question enters the analyzer as two vibra-

tions at right angles and in the same phase. In Fig. 160, let oe

and od represent the two components, and xx and yy the two

planes of vibration in the analyzer, oe will give the components

om and on, and od the components am! and on'. Since the com-

ponents om and ow! annul one another, the color to which they

correspond is wanting in the light resulting from vibrations in

'^

;if

%
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the plane xx, while since the components on and on! are added,

this color is found in full intensity among the vibrations in the

plane yy. For light of other wave
lengths, the relative retardation is

^. different, but for each vibration

/'
j

period, the component in the di-

i rection xx combined with that in

m the direction yy represents the
•''

i "d total light for that period in the

\y beam entering the analyzer; that

Fig. 160. is, the total effect of vibrations in

the direction xx combined with that of vibrations in the direc-

tion yy must produce white light, and one effect must, there-

fore, be the complement of the other.

Let us suppose the plate thick enough to cause a retarda-

tion equal to a certain number of wave lengths, which we will

assume to be ten, of the shortest waves of the visible spec-

trum. Since the longest waves of the visible spectrum are

about twice the length of the shortest, they will suffer a retar-

dation of five wave lengths. Other waves will suffer a retar-

dation of nine, eight, seven, and six wave lengths. But, as was
seen above, a retardation of one or more whole wave lengths

of any kind of light causes extinction of that kind of light in

the beam transmitted by the crossed analyzer. In the case

considered the . transmitted beam will lose six kinds of light

distributed at about equal distances along the spectrum. The
light remaining will consist of the different colors in about the

same proportions as they exist in white light, and the beam
will therefore be white but diminished in intensity. Hence,

when a thick plate is interposed between the crossed polarizer

and analyzer the restored light is white.

331. Elliptic and Circular Polarization.—In the last sec-

tion, in discussing the effects of a thin plate, we considered the

two components of the vibratory motion propagated from it. It
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was stated that the real motion of the vibrating particles was
in genera,l elliptical. Let us consider more fully the real mo-
tion. Let us suppose that the light is light of one wave length

only, and that, as before, the principal plane of the plate makes
an angle of 45° with the plane of vibration of the incident light.

In Fig. 161 letj/jK represent the original plane of vibration, and

ab and cd the planes of 'maximum and minimum elasticity in

the plate. As already , explained, the first disturbance as the

light enters the plate is in the direction yy\
but as the disturbance is propagated into

the plate, each disturbed particle receives

an impulse first of all in the direction cd of

greatest elasticity, then in other directions

between cd and ab, and finally in the direc-

tion ab. From this results an elliptical or-

bit with the major axis in the direction yy.

To determine this orbit exactly it is only

necessary to take account of the time that

elapses between the impulse in the direction

cd and the corresponding impulse in the direction ab. It is sufifi-

cient to consider any particle as actuated by two- vibratory mo-

tions in the directions cd and ab at right angles, and differing in

phase. In Fig. 161, one side of the rect-

angle represents the greatest displace-

ment in the direction cd, and the other

side the displacement occurring at the

same instant in the direction ba. The

point r will represent the actual position

of the vibrating particle. Constructing

now the successive displacements of the

particles in the directions cd and ba and

combining these, we have the elliptical

path as shown. As the light penetrates

farther and farther into the plate the relative phases of the two

vibrations change continually, and the ellipse passes through

Fig. 162.
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all its forms from the straight line yy to the straight line xx
at right angles to it and back to the straight line yy. The
direction of the path of the particle in the surface of the

plate as the light emerges will be the direction of the path

of all the particles in the polarized beam beyond the plate.

If the component vibrations be in the same phase, that is,

if they reach their elongations in the directions ba and cd

(Fig. 162) at the same instant, the resultant vibration is in

the line yy and the light is plane polarized exactly as it

left the polarizer. This will occur when the retardation of

light in the plane of ba with respect to that in the plane of cd

is one, two, or more whole wave lengths.

When the retardation is one half, three

halves, or any odd number of half wave \
lengths, the phases of the two" vibrations are

as shown in Fig. 163, and the resultant is a

plane polarized beam the vibrations of which

are at right angles to those of the beam from

the polarizer. A case of special interest is i

shown in Fig. 164, in which the difference of

phase is one fourth a period, and the result- Fig. 163.

ant vibration is a circle. A difference of three fourths will give

a circle also, but with the rotation in the opposite direction.

A plate of such thickness as to produce a

retardation of one quarter of a wave

,a length will give a circular vibration, and
the beam issuing from the plate is then

circularly polarized. Its peculiarity is that

j

the two beams into which it is divided by
a double refracting crystal are always of

the same intensity, and no form of ana-

\j lyzer will distinguish it from ordinary

light. Quarter wave plates are often made

x

y
Fig. 164.

by splitting sheets of mica until the re-

quired thickness is obtained.
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332. Circular Polarization by Reflection.—It has been

seen that light reflected from a transparent medium at a cer-

tain angle is polarized, and that an equal amount of polarized

light exists in the refracted beam. Light totally reflected in

the interior of a medium is also polarized, and here, there being

no refracted beam, the tw^D components exist in the reflected

light, but so related in phase that the light is elliptically polar-

ized. Fresnel has devised an apparatus known as Fresnel's

rhomb, by means of which circularly polarized light is obtained

by two internal reflections of a beam of light previously polar-

ized in a plane at an angle of 45° with the plane of incidence.

333. Effect of Plates Cut Perpendicularly to the Axis
from a Uniaxial Crystal.—A crystal, such as Iceland spar,

which has but one optic axis, is called a uniaxial crystal. Polar-

ized light passing perpendicularly through a plate cut from such

a. crystal perpendicularly to its optic axis suffers no change. If,

however, the plate between the crossed polarizer and analyzer

be inclined to the direction of the beam, light passes through

the analyzer. It is generally colored, the color changing with

the obliquity of the plate. If a system of lenses be used to

•convert the polarized beam into a conical pencil and the plate

be placed in this perpendicular to its axis, the central ray of

the pencil will be unchanged, but the oblique rays will be

resolved except in and at right angles to the plane of vibration,

and there will appear beyond the analyzer a system of colored

rings surrounding a dark centre, and intersected by a black

<:ross. If the analyzer be turned through 90°, a figure comple-

mentary to the first in all its shades and tints is obtained ; the

black cross and centre become white, and the rings change to

complementary colors.

334. Biaxial Crystals.—Most crystals have two optic axes

or lines of no double refraction, instead of one. They are

biaxial crystals. Their optic axes may be inclined to each

other at any angle from 0° to 180°. The wave surfaces within
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these crystals are no longer the sphere and the ellipsoid, but

surfaces of the fourth order with two nappes tangent to each

other at four points where they are pierced by the optic axes..

Neither of the two rays in such a crystal follows the law of or-

dinary refraction. The outer wave surface around one of the

points of tangency has a depression something like that of an

apple around the stem. By reference to the method already

employed for constructing a wave front, it will be seen that there

may be such a position for the incident wave that, when the

elementary wave surfaces are constructed, the resultant wave

will be a tangent to them in the circle around one of these de-

pressions where it is pierced by the optic axis. Now since the

direction of a ray^ of light is from the centre of an elementary

wave surface to the point of tangency of that surface and the

resultant wave, we shall have in this case an infinite number of

rays forming a cone, of which the base is the circle of tangency..

In other words, one ray entering the plate in a proper direction

may be resolved into an infinite number of rays forming a cone,

which will become a hollow cylinder of light on emerging from

the crystal. This phenomenon is called conical refraction. It

was predicted by Hamilton from a mathematical analysis of

the wave propagation in such crystals.

If a plate be cut from a biaxial crystal perpendicular to the

line bisecting the angle formed by the optic axes, and placed

between the polarizer and analyzer in a conical pencil of light,

there will be seen a series of colored curves called lemniscates,

resembling somewhat a figure 8. The existence of this phe-

nomenon was also predicted and the forms of the curves in-

vestigated by mathematical analysis before they were seen.

335. Double Refraction by Isotropic Substances when
Strained.—A piece of glass between the crossed polarizer and
analyzer, if subjected to forces tending to distort it, will restore

the light beyond the analyzer and in some cases produce

chromatic effects. Unequal heating produces this result, and
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a long tube made to vibrate longitudinally shows it when th&

light crosses it near the node. Pieces cut from plates of un-

annealed glass exhibit double refraction when examined by-

polarized light. Indeed, the absence of double refraction is a
test of perfect annealing.

336. Effects of Plates of Quartz.—A quartz crystal is uni-

axial, and gives an ordinary and an extraordinary ray, but is un-

like Iceland spar in that the extraordinary wave front in it is a

prolate spheroid and lies wholly within the spherical ordinary

wave, not touching it even where it is pierced by the optic

axis. The effects due to plates of quartz in polarized light

differ very greatly from those due to Iceland spar or selenite.

If a plate of quartz cut perpendicular to the axis be placed in

a beam of parallel, homogeneous, plane polarized light at right

angles to its path, the light is, in general, restored beyond the

analyzer, and is unchanged by the rotation of the quartz

through any azimuth. If the analyzer be rotated through a

certain angle, depending on the thickness of the quartz plate,,

the light is extinguished. It is evident that the plane of polar-

ization has simply been rotated through a certain angle. Light

of a different wave length would have been rotated through a

different angle. A bearn of white polarized light, therefore,

has the planes of polarization of its constituents rotated through

different angles, and the effect of rotating the analyzer is to

quench one after another of the colors as the plane of polari-

zation for each is reached. The result is a colored beam which

changes its tint continuously as the analyzer rotates.

The best explanation of these phenomena was given by

Fresnel. It is found that neither of the two beams from a

quartz crystal is plane polarized. The polarization is in gen-

eral elliptical, but becomes circular for v 'es perpendicular

to the axis of the crystal, the motion in one ray being right-

handed and in the other left-handed. Each particle of ether in

the path of the Hght within the crystal is actuated at the same
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time by two circular motions in opposite directions. Its real

motion is in the diameter which bisects the

chord joining any two simultaneous hypo-

thetical positions of the particle in the two

circles. In Fig. 165 let -Pand Q represent

these two simultaneous positions. It is

plain that the two components in the direc-

tion AB have the same value and are added,

while those at right angles to AB are equal

and opposite and annul each other. So long

as the two components retain the same relation as that assumed,

the real motion of the particle is in the line AB. But in the

quartz plate one of the motions is propagated more rapidly

than the other, and another particle farther on in the path of

the light may reach the point P in one of its circular vibra-

tions at the same time that it reaches Q in the other. This

will give CD as its real path, and the plane of its vibration has

been rotated through the angle BOD. When the light finally

emerges from the plate its plane of vibration will have been

rotated through an angle which is proportional to the thick-

ness of the plate and depends upon the wave length of the

light employed. A plate of quartz one millimetre in thick-

ness rotates the plane of polarization of red light corresponding

to Fraunhofer's line B, 15° 18', of blue light corresponding to

the line G, 42° 12'. Some specimens of quartz rotate the

plane of polarization in one direction, and some in the oppo-

site. Rotation which is related to the direction of the light as

the directions of rotation and propulsion in a right-handed

screw is said to be right-handed, and that in the opposite

direction is left-handed.

337. Artificial Quartzes.—Reusch has reproduced all the

effects of quartz plates by superposing thin films of mica,

each film being turned so that its principal plane makes an

angle of 45° or 60°, always in the same direction, with that of
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the film below. If a plane polarized wave enter such a com-

bination, an analysis of the resolution of the vibration as it

passes from film to film will show that the result is equivalent

to that of two contrary circular vibrations, one of which

is propagated less rapidly than the other. This helps

to establish Fresnel's theory of the rotational effects of

quartz.

338. Rotation of the Plane of Polarization by Liquids.—
Many liquids rotate the plane of polarization, but to a less amount

than quartz. A solution of sugar produces a rotation varying

with the strength of the solution, and instruments called sac-

charimeters are made for determining the strength of sugar solu-

tions from their effect in rotating the plane of polarization. In

these instruments the effect is often measured by interposing a

wedge-shaped piece of quartz, and moving it until a thickness

is found which exactly compensates the rotation produced by

the solution.

339. Electromagnetic Rotation.—Faraday discovered that

when polarized light passes through certain substances in a

magnetic field, the plane of polarization is rotated through a

certain angle. The experiment succeeds best with a very dense

glass consisting of borate of lead, so placed that the light may
traverse it along the lines of magnetic force, in the field pro-

duced by a powerful electromagnet. The amount of rotation

is proportional to the difference of magnetic potential between

the two ends of the glass. The direction of rotation, as was

shown by .Verdet, is generally right-handed in diamagnetic

media, and left-handed in paramagnetic media. It also depends

upon the direction of the lines of force, and is therefore re-

versed by reversing the current in the electromagnet. It fol-

lows, also, that if the light, after traversing the glass with the

lines of force, be reflected back through the glass against the

lines of force, the rotation will be doubled. It is important to

note that this is the reverse of the effect produced by quartz.
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solutions of sugar, etc., which rotate the plane of polarization

in consequence of their own molecular state. When light of

which the plane of polarization has been rotated by passage

through such substances is reflected back upon itself, the rota-

tion produced during the first passage is exactly reversed during

the return, and the returning light is found to be polarized in

the sanje plane as at first.

In the magnetic field the effect is as though the medium
which conveys the light were to rotate around an axis parallel

to the lines of force, and to carry with it the plane of vibration.

Evidently the plane of vibration would be turned through a

certain angle during the passage of the light through the body,

and would be turned still further in the same direction if the

light were to return. An illustration may be drawn from the

movement of a boat rowed across a current. If we row at right

angles to the current, the boat is carried downward, and lands

on the opposite shore below the point of starting. If then

we row back, still at right angles to the current, the boat on

reaching the shore from which it started is farther down the

stream. On the other hand, in moving across a still lake, we
might find ourselves compelled to take an oblique course on

account of rocks or other permanent obstacles. If so, we should,

on returning,be compelled to retrace our path, and would land

at the point of starting.

When we remember that iron becomes magnetic by the

effect of currents of electricity flowing in conductors around it,

and that Ampfere conceived that a permanent magnet consists

of molecules surrounded by electric currents, all in the same
direction, it is easy to imagine that the magnetic field is a re-

gion where the ether is actuated by vortical motions, all in the

same direction, and in planes at right angles to the lines of

magnetic force. Such a motion would account for the rota-

tional effects of the magnetic field upon polarized light.

Not only glass but most liquids and gases exhibit rotational
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effects when placed in a powerful magnetic field ; and Kerr has

shown that when light is reflected from the polished pole of

an electromagnet, its primitive plane of polarization is rotated

when the current is passed, in one direction, for a north pole,

and in the opposite direction for a south pole.

340. Maxwell's Electromagnetic Theory of Light.—In

Maxwell's treatment of electricity and magnetism, he assumed

that electrical and magnetic actions take place through a uni-

versal medium. In order to determine whether this medium
may not be identical with the luminiferous ether, he investigated

its properties when a periodic electromagnetic disturbance is

supposed to be set up in it, such as would result from a rapid

reversal of electromotive force at a point, and compared them

with the observed properties of the ether, on the assumption

that light is an electromagnetic disturbance. He showed that

such a disturbance would be propagated through the medium

in a way similar to that in which vibrations are transmitted in

an elastic solid. He showed further that if light were such a

disturbance, its velocity in the ether should be equal to v, the

ratio of the electrostatic to the electromagnetic system of units.

Numerous measurements of the velocity of light and of this

ratio show that they are very nearly equal.

He also showed that the indices of refraction of transparent

media should be equal to the square roots of their specific in-

ductive capacities. This relation may be deduced as follows

:

We may suppose electrical and luminous effects to be trans-

mitted through the dielectric by means of the ether within it,

and farther suppose electrical effects in the medium, and there-

fore its specific inductive capacity, to be proportional to dis-

placements produced in the ether in it by electrical forces.

Other things being equal, a displacement is inversely propor-

tional to the elasticity of the medium. The velocity of propa-

gation of a disturbance is directly proportional to the square

root of the elasticity, if the density of the ether remain constant,
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and the index of refraction for light is inversely as the velocity

of propagation. Hence the index of refraction is equal to the

square root of the specific inductive capacity. To illustrate

this let us suppose the specific inductive capacity of a dielectric

to be 2. This means that a given electric force produces in the

ether in that substance twice the displacement which it would

produce in the ether in air. Hence the elasticity of the ether

in that substance is one half as great as in air, the velocity of

propagation of light in it will be to the velocity in air as i : '(/2,

and the index of refraction will be ^2.

Measurements of indices of refraction and specific inductive,

capacities have shown that the relation which has been stated

holds true in many cases. Hopkinson, has shown, however,

that it does not hold true for animal and vegetable oils.

The theory leads to the conclusion that the direction of pro-

pagation of the electrical disturbance and the accompanying

magnetic disturbance at right angles to it is normal to the plane

of these disturbances. By making the assumption, which is

justified by Boltzmann's measurements upon sulphur, that an

eolotropic medium has different specific inductive capacities in

different directions. Maxwell shows also that the propagation

of the electrical disturbance in a crystal will be similar to that

of light. It has also been shown that the electrical disturbance

will be reflected, refracted, and polarized at a surface separating

two dielectrics.

Lastly, Maxwell concludes that, if his theory be true, bodies.

which are transparent to the vibrations of the ether should be
dielectrics, while opaque bodies should be good conductors.

In the former the electrical disturbance is propagated without

loss of energy ; in the latter the disturbance sets up electrical

currents, which heat the body, and the disturbance is not pro-

pagated through the body. Observation shows that, in fact,

solid dielectrics are transparent, and solid conductors are opaque,

to radiations in the ether. Maxwell explains the fact that
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many electrolytes are transparent and yet are good conductors

by slipposing that the rapidly alternating electromotive forces

which occur during the transmission of the electrical disturbance

act for so short a time in one direction, that no complete sepa-

ration of the molecules of the electrolyte is effected. No elec-

trical current, therefore, is set up in the electrolyte, and elec-

trical energy is not lost during the transmission of the disturb-

ance.

29
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TABLE IV.

Densities of Substances at o°.

The densities of solids given in tliis table must be taken as only approx-

imate. Specimens of the same substance differ among themselves to such an

extent as to render it impossible to give more precise values.

Aluminium 2.6

Brass 8.4

Copper 8.9

Gold 19.3

Glass (crown) 2.5 to 2.7

Hydrogen 0.0000895

Ice 0.918

Iron (wrought) 7-6,to 7.8

" (cast) 7.2 to 7.7

Lead 11 .3

Mercury i3 '596

Platinum. 21.5

Silver 10
.

5

Zinc 7-1

TABLE V.

Units of Pressure for g = 981,

Grams per sq. cm. Degrees per sq. cm.

Pound per square inch.. 7o-3i 6.g X To"

I inch of mercury at 0° 34-534 3-388 X 10*

I millimetre of mercury at 0° 1-3596 '333 • 8

1 atmosphere (760 mm.) 1033-3 1.0136 X io«

X atmosphere (30 inches) 1036

.

1 . 0163 X lo"

TABLE VI.

Elasticity.

If p is the force in degrees per unit area tending to extend of compress a

di , ... dp
tody, the linear elasticity is ^, and the volume elasticity is ^-.

dp. *
di dv

Glass 6.03X10" 4.15X10"

Steel 2. 14X10" 1.84X10"

Brass 1.07 X 10"

Mercury -•-• 3-44 X io'»

Water 2.02 X io>«
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TABLE VII.

Absolute Density of Water at t" in Grams per Cubic Centimetre.

t^. Density.

O 0.999884

1 0.999941

2 0.999982

3 1.000004

4 1. 000013

5 1.000003

f. Density.

7 0.999946

8 0.999899

9 0.999837

10 0.999760

15- 0.999173
20 0.998272

0.999983 30 0.995778 100

f. Density.

40 o. 99236

50 0.98821

60 0.98339

70 0.97795

80 0.97195

90 0.96557

0.95866-

TABLE Vin.

Density of Mercury at t°. Water at 4° being 1.

if". Density. log.

o 13-5953 I-I3339

10 13-5707 1.13260

f. Density. log.

20 13.5461 1.13182-

30 13-5217 I-13103,

TABLE IX.

Coefficients of Linear Expansion.

~ dl
Temperature. " = -j:-

Aluminium 16° to 100° 0.0000235

Brass o to 100 0.0000188

Copper o to 100 0.0000167

German silver o to 100 0.0000184

Glass o to 100 0.0000071

Iron 13 to 100 0.0000123

Lead o to 100 0.0000280

Platinum o to 100 0.0000089

Silver o to 100 0.0000194

Zinc o to TOO 0.0000230

dV
Coefficients of voluminal expansion, -^ = 3a.
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yABLE X.

Specific Heats—Water at o* = i.

Solids and Liquids,

Aluminium 0.212

Brass 0.086

Copper 0.093

Iron o. 112

Lead 0.031

Mercury 0.033

Platinum 0.032

Silver , 0.056

Water (0° to 100°) 1.005

Zinc 0.056

Gases and Vapors at Constant Pressure.

Air o. 237

Hydrogen 3-4io

Nitrogen 0.244

Oxygen 0.217

G>
Ratio, —•= 1.404.

TABLE XL

1. Melting Points. IL Boiling Points. IIL Heats of Liquefaction.

IV. Heats of Vaporization. V. Maximum Pressure of Vapor at o"

IN Millimetres of Mercury.

I. II. III. IV. V.

Ammonia —33-7° •• 294 at 7.8° 3344

Carbon dioxide —65° —78.2 .. 49.3 at 0° 27100

Chlorine —33-6 .. •• 456o

Copper 1200

Lead 325 •• 5-9°

Mercury —39 357 2-8 62 0.02

Nitrous oxide, NaO — 105 . . . . 24320

Platinum 1780 .. 27.2

Silver 1000 .

.

21 . i

Water o 100 80 537 4.6

Zinc 415 •• 28.1
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TABLE Xyi.

Maximum Pressure of Vapor of Water at Various Temperatures in

(I.) Dynes per Square Centimetre, (II.) Millimetres of Mercury.

Temp.
~-2o°

I. II.

1336

— 10°
, 2790

0° 6133
. 4.6

10 12220 9.2

20 33190 17.4

30 42050 31.5

40 73200 54.6

50 1.226X10' 96.2

Temp. I.

60° 1.985 X 10'

80 ...,, . 4.729 X 10'

100 10.14

120 19.88

140 •• .a6-26

160 62.10

180 100.60

200 156.

X I0»

X lo^

X 10'

X 10*

X 10=

Xio'

II.

149.

355-

760.,

1491.

2718.

4652.

7546.

11689.^

TABLE XIII.

Critical Temperatures (y) and Pressures in Atmospheres (/),

THEIR Critical Temperatures, of Various Gases.

T.

Hydrogen — 174.

Nitrogen —124.
Oxygen —105.

AT

p.

99.

42.

49.
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TABLE XV.

Energy Produced by Combination of i Gram of' Certain Substances
WITH Oxygen.

Gram-degree of Heat. Energy in ergs.
Carbon, forming CO 2141 8.98X10'*

COa '8000 3.36X10"
Carbon monoxide, forming COa. . 2420 1.02 X lo"

Copper, CuO 602 2.53X10'*
Hydrogen, HaO 34000 1.43 X 10''

Marsh gas, COa and HiO 13100 5.50X10"
Zinc, ZnO 1301 5.46X10'°

TABLE XVL

Atomic Weights and Combining Numbers.

Atomic Weight. Combining Number,
Aluminium 27.04 9.01

Copper 63.18 (cupric) 31.59
" "

(cuprous) 63.18

Gold 196.2 65.4

Hydrogen i

.

i

.

Iron 55.88 (ferric) 18.63
" "

(ferrous) 27.94
Mercury igg.S (mercuric) 99.9

" " (mercurous), 199.8

Nickel 58.6 29.3

Oxygen 15.96 '

7.98

Platinum I94'3 64.8

Silver 107.7 107.7

Zinc 64.88 32'44

TABLE XVIL

Molecular Weights and Densities of Gases.

Simple Gases.

Atomic Weight,

Chlorine, CI3 70.75

Hydrogen, Ha 2.00

Nitrogen, Na 28.024

Oxygen, O, 31927

Sp.gr.,.fir=j.
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Compound Gases.

Atomic Weight

Carbonic oxide, CO 27-937

Carbonic dioxide, CO2 43-90

Hydrochloric acid, HCl 36 . 376

Vapor of water, HjO 17-96

Atmospheric air

Sp. gr., H=i.
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Carbon (Carrfe's electric light) 3.9 X 10'

Glassat2oo° 2.23X 10"

Gutta-percha, at 24° , 3-46X 10''

" " " 0° 6.87X10=*
Selenium, at 100° , 5-9 X.ip'.'.

Water, at 22° 7-P X io'.°

Zinc sulphate + 23 HjO 1.83X.IP"

Copper sulphate + 45 HsO i.giX 10'°,

TABLE XXI.

Indices of Refraction.

Index.

Soft crown glass i . 5090

I. 5180

I
.
5266

Dense flint glass 1.6157

1.6289

1.6453

Rock salt 1.5366

1.5490

1-5613

Diamond 2.47

Amber 1-532

Kind of
Light.

A
E
G
B
E
G
A
E
G
D
D

Iceland spar.

Quartz

Ordinary Index.

1.658

1.544

Index.

Canada balsam i . 528

Water 1.331

1-336

Carbon disulphide..

Air at 0°, 760 mm..

Kind of Light.

D
D

1-344

1. 614

1.646

1.684

1.00029

1.000296

1.000300

Kind of
Light.

Red
B
E
H
A
E
G
A
E
H

Extraordinary Index.

1.486

1-553

TABLE XXII.

Wave Lengths of Light—Rowland's Determinations.

Fraunhofer's line A (edge), 7593-975 tenth metres.

B "
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TABLE XXIII.

Rotation of Plane of Polarization by a Quartz Plate, i mm. thick,.

CUT perpendicular to Axis.

A i2°.668

B I5-.746

C. i7°-3i8

Dj 21°. 727

E 27°. 543.

F 32°-773

G 42°. 604

H 51°. 193.

TABLE XXIV.

Velocities of Light.

Cm. per Sec.

Michelson, 1879 2.99910 X lo'"

Michelson, 1882 2.99853 X lo'"

Newcomb, 1882 2.99860 X 10'°

Foucault, 1862 2.98000 X lo'o

The Ratio between the Electrostatic and Electromagnetic Units,

Cm. per Sec.

Weber and Kohlrausch 3 . 1074 X lo*"

W.Thomson ...2.825 X lo'"

Maxwell 2.88 X 10"

Ayrton and Perry 2.98 X 10'°

J. J. Thomson 2.963 X 10"

Cm. per Sec.

Cornu, 1874 2.98500XIO,"''

Cornu, 1878 2.99990X10*°
Youngand Forbes, 1880 3.01382X10'*^

Cm. per Sec.

Exner ...,.... 2.920 X lo'"'

Klemencic 3.018 X 10'*

Himstedt 3.007 X 10'*

CoUey 3.015 X lo'"'
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Aberration, spherical, 426; chromatic, 455
.Aberration of fixed stars, 432

Absolute temperature, zero of, igi; scale of, 212

Absorption, 103; coeiBcient of, 104; of gases, 104; of radiant energy, 463; of

radiations, 466; by gases, 467; relation of, to emission, 470
Acceleration, 14; angular, 49
Accelerations, composition and resolutions of, 16

Achromatism, 455

Acoustics, 353
Adhesion, 87

Adiabatic line, 194

Aggregation, states of, 85

Air-pump, 137; receiver of, 137; plate of, 138; theory of Sprengel, 134; Spren-

gel, 139; Morren, 140

Airy, determination of Earth's density, So

Alloys, melting points of, 176

Ampere, relation of current and magnet, 273; mutual action of currents, 311;

equivalence of circuit and magnetic shell, 314; theory of magnetism, 315

Ampere, a unit of electrical current, 309

Amplitude of a simple harmonic motion, 18; of a wave, 23; its relation to in-

tensity of light, 438

Analyzer, 481

Andrews, critical temperature, 184; heat of chemical combination, 201.

Aneroid, 141

Angles, measurement of, 9; unit of, 9

Animal heat and work, 218

Antinode, 362

Aperture of spherical mirrors, 411

Apertures, diffraction effects at, 443

Archimedes, his principle in hydrostatics, 124

Aristotle, his theory of vision, 396
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Astatic system of magnetic needles, 317

Atmosphere, homogeneous, 115; pressure of, 123; how stated, 124

Atoms, 85

Attraction, mass or universal, 67; constant of, 80

Avenarius, experiments in thermo-electricity, 342; thermo-electric formula, 345
Axis of rotation, 52; of shear, 114; of floating body, 125; magnetic, 224, 228;

of spherical mirror, 411; optic, of crystal, 474, 489

Balance, 76; hydrostatic, 125

Barometer, 122; Torricellian form of, 123; modifications of, 124; preparation

of, 124

Beam of light, 422.

Beats of two tones, 385; Helmholtz's theory of, 385; KSnig's theory of, 385;

Cross's experiment on, 387

Beetz, his experiment on a limit of magnetization, 245

Berthelot, heat of chemical combination, 202

BerzeliiTs, his electro-chemical series, 287

Bidwell, view of Hall effect, 316

Bililar suspension, 268, 321

Biot, law of action between magnet and electrical current, 29S

Biot and Savart, action between magnet and electrical current, 297

Bodies, composition of, 85; forces determining structure of, 87; isotropic and
eolotropic, 108

Boiling. See Ebullition, 182

Boiling point, 182

Bolometer, depends upon change of resistance with temperature, 279; used to

study spectrum, 459
Boltzmann, specific inductive capacity of gases, 264

Borda, his pendulum, 74; his method of double weighing, 78

Boutigny, spheroidal state, 183

Boyle, his law for gases, no; limitations of, 141; departures from, 185

Bradley, determined velocity of light, 433
Breaking weight, 119

Brewster, his law of polarization by reflection, 480

Cagniard-Latour, critical temperature, 183

Calorie, 151; lesser, 151

Calorimeter, Black's ice, 153; Bunsen's ice, 153; water, 155; thermocalorime-

ter of Regnault, 157; water equivalent of, 156

Calorimerty, 153; method of fusion, 153; of mixtures, 155; of comparison,

156; of cooling, 157
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Camera obscura, 427

Capacity, electrical, 255; unit of, 256; of spherical condenser, 258; of plate

condenser, 260; of freely electrified sphere, 260; of Leyden jar, 261

Capacity, specific inductive, 257; relation of, to index of refraction, 264, 495;
relation of, to crystallographic axes, 264

Capillarity, facts of, 89; law of force treated in, 90; equation of, 94; Plateau's

experiments in, 97

Carlini, determination of Earth's density. So

Carlisle, his apparatus for electrolysis of water, 283

Carnot, his engine, 206 ; his cycle, 207

Cathetometer, 6

Cavendish, experiment to prove mass attraction, 69; determination of Earth's.

density, 79; determined force in electrified conductor, 249; discovered

specific inductive capacity, 257

Caustic curve, 426; surface, 426

Central forces, propositions connected with, 60

Centrobaric bodies, 45

Charge, unit, electrical, 252; energy of electrical, 262

Chemical affinity measured in terms of electromotive force, 286

Chemical combination, heat equivalent of, 201

Chemical separation, energy required for, 218; gives rise to electromotive'

force, 285

Chladni's figures, 377

Christiansen, anomalous dispersion in fuchsin, 472

Circle divided, 9
Circuit, electrical, equivalence of, to magnetic shell, 300, 305; direction of lines

of force due to, 310

Clark, his standard cell, 293; its electromotive force, 293; his potentiometer, 334

Clarke, his atomic weights used, 176

Clausius, his principle in thermodynamics, 206; his theory of electrolysis, 289

Clement and Desormes, determination of ratio of specific heats of gases, 195

Coercive force, 223

Cohesion, 87

CoUimating lens, 451, 459-

Collision of bodies, 29

Colloids, 86; diffusion of, 107

Colors of bodies, 467; produced by a thin plate of doubly refracting crystal ia

polarized light, 485 ; by a thick plate, 486

Colors and figures produced by a thin plate of doubly refracting crystal in

polarized light, 489, 490, 491

Comparator, 8

Compressibility, 84
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Compressing pump, 140

Compressions, 109

Concord, musical, 367

Condenser, electrical, 256; spherical, 258; plane, 260

Conduction of electricity, 246

Conductivity for heat, 164; measurement of, 165 ; changes of, with temperature[,

167; of crystals, 167; of non-homogeneous solids, 167; of liquids, 167

Conductivity, specific electrical, 278

Conductors, good, 247; poor, 247

Contact, angles of, 95

Continuity, condition of, 128; for a liquid, 128

Convection of heat, l6i

Copernicus, his heliocentric theory, 67

Cords, longitudinal vibrations of, 374; transverse vibrations of, 375

Cornu and Bailie, determination of Earth's density, 80

Coulomb, his laws of torsion, 116; his torsion balance, Il6; law of magnetic

force, 225; distribution of magnetism, 228; law of electrical force, 249

Coulomb, a unit of quantity of electricity, 252

Counter electromotive force, 279; general law of, 279; of decomposition,

measure of, 285; of polarization, 291; of electric arc, 348

Couple, 44; moment of, 44

Critical angle of substance, 408

Critical temperature, 183

Crookes, invented the radiometer, 192; his tubes, 351; explanation of phe-

nomena in tubes, 352

Cross, experiment on beats, 387

Crystal systems, 86

Crystalloids, 86; diffusion of, 107

Crystals, conductivity of, for heat, 167; specific inductive capacity of, 264; elec-

trification of, by heat, 264; optic axis of, 474; principal plane of, 475; vary-

ing elasticity in, 478; varying-velocity of light in, 479; effects of plates of,

on polarized light, 483, 486, 489, 490, 491; uniaxial, 489; biaxial, 489;

optic axes of biaxial, 489

Ctesibius, invented force-pump, 122

Gumming, reversal of thermo-electric currents, 342

Current, electrical, 275; effects of, 272; electrostatic unit of, 275; strength, 275;

strength depends on nature of circuit, 276; set up by movement of a liquid

surface, 296; electromagnetic unit of, 307; practical unit of, 309; direction

of lines of force due to, 298, 310; mutual action of two, 310; Ampfere's law

for the mutual action of, 311; deflected in a conductor by a magnet, 315;

measured in absolute units, 321; Kirchhoff's laws of, 331

Current, extra, 325
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Current, induced electrical, 321; quantity and strength of, 323; measured in

terms of lines of force, 323; discovered by Faraday, 324; Lenz's law of,

. 325; Faraday's experiments relating to, 325

Cycle, Carnot's, 207 ; illustrated in hot-air engines, 216

Dalton, his law of vapor pressure, 181

Daniell's cell, 291; electromotive force of, calculated, 292

Dark lines in solar spectrum, explanation of, 469

Davy, his melting of ice by friction, 145; his electrolysis of caustic potash, 283

Declination, magnetic, 233

Density, 11

Density, magnetic, 227

Depretz and Dulong, measurement of animal heat by, 219

Dew point, 203 ; determination of, 203

Dialysis, 107

Diamagnet, distinguished from paramagnet, 239, 242

Diamagnetism, 237; explanation of, by Faraday, 237; by Thomson, 238; on

Ampere's theory, 315; by Weber, 315

Diaphragm, vibrations of, 378

Dielectric, 256; strain in, 263

Diffraction of light, 443; at narrow apertures, 443; at narrow screens, 445;

grating, 446; phenomena due to, 452

Diffusion, 103; of liquids, 104; coefficient of, 105; through porous bodies, 106;

through membranes, 106; of gases, 107

Dilatability, 84

Dilatations, 109

Dimensional equation, 10

Dimensions of units, 10

Dip, magnetic. 233

Discord, in music, 367

Dispersive power of substance, 454

Dispersion, normal, 409, 453; anomalous, 472

Dissociation, 201 ; heat equivalent of, 201

Distribution of electricity on conductors, 251

Dividing engine, 7

Divisibility, 84

Double refraction, in Iceland spar, 474; explanation of, 475; by isotropic sub-

stances when strained, 490

Draper, study of spectrum in relation to temperature, 471

Drops, in capillary tubes, lOi; Jamin's experiments on, 102

Dulong and Petit, law connecting specific heat and atomic weight, 176; formula

for loss of heat by radiation, 470
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Dutrochet, his definitiod of osmosis, io6

Dynamics, n
Dynamo-machine, 328

Dyne, 26

Ear, tympanum of, 379

Earth, density of, 79
Ebullition, 180, process of, 182; causes affecting, 182

Edlund: study of counter electromotive force of electric arc, 348

EfHux of a liquid, 129; quantity of, 134

Elasticity, 84, 108; modulus and coefficient of, no; voluminal, of gases, no;
of liquids, 112; of solids, 113; perfect, 118; of tension, 114; of torsion,

115; of flexure, 118; limits of, 118

Elasticity of gases, no, 193; at constant temperature, 193; when no heat enters

or escapes, 193; ratio of these, 198; determined from velocity of sound,

199

Electric arc, 348; counter electromotive force of, 348

Electric discharge, in air, 348; in rarefied gases, 350

Electric pressure, 255

Electrical convection of heat, 347

Electrical endosmose, 288

Electrical machine, 268; frictional, 268; induction, 269

Electricity, unit quantity of, 252; flow of, 253, 374

Electrification by friction, 246; positive and negative, 246, 248

Electro-chemical equivalent, 284

Electrode, 282

Electrodynamometer, 321

Electirolysis, 282; bodies capable of, 282; typical cases of, 283; influenced by

secondary chemical reactions, 283; Faraday's laws of, 284; theory of, 287;.

modified by outstanding facts, 288; Clausius' view of, 289

Electrolyte, 282

Electromagnet, 314

Electromagnetic system of electrical units, basis of, 307

Electrometer, 265; absolute, 265; method of use of, 267; quadrant, 267; capil-

lary, 294

Electromotive force, 274; measured by difference of potential, 274; means of

setting up, 280; measured in heat units, 286; a measure of chemical affinity,

286; of polarization, 291; theories of, of voltaic c?Il, 293; due to mo-

tion in magnetic field, 321; measured in terms of lines of force, 323; de-

pends on rate of motion, 323; electromagnetic unit of, 326; practical unit

of, 326; at a heated junction, 341; required to force spark through air, 3491

Electromotive force, counter. See Counter electromotive force, 279, etc.
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Electromotive forces, compared by Clark's potentiometer, 334
Electrophorus, 26,9

Electroscope, 265

Electrostatic system of electrical units, basis of, 252

Elements, chemical, 85; electro-positive and electro-negative, 286
,

Emission of radiant energy, 468; relation of, to absorption, 470

Endosmometer of Dutrochet, 107

Endosmose, 106

Endosmose, electrical, 288
' Energy, 31; potential and kinetic, 31; and work, equivalence of, 32; unit of, 32;

conservation of, 32; of fusion, 179; of vaporization, 200; sources of terres-

trial, 217; of sun, 221; dissipation of,-22l

Engine, efficiency of heat, 205; reversible, 206; Carnot, 206; efficiency of re-

versible, 206, 209, 210, 211; steam, 214; hot-air, 215; gas, 215; Stirling,

216; Rider, 216

Eolotropic bodies, 108

Epoch of a simple harmonic motion, 21

Equatorial plane of a magnet, 224

Equilibrium, 29

Equipotential surface, 37

Erg, 32

Ether, 85; luininiferous, 397; velocity of, in moving body, 435; interacts with

molecules of bodies, 473; transmits electrical and magnetic disturbances,

495
Ettinghausen, view of Hall effect, 316

Evaporation, 180; process of, 180

Exosmose, 106

Expansion, of solids by heat, 168; linear, 168; voluminal, 168, 173; coefficient of,

168; factor of, 169; measurement of coefficient of, 169, 173; of liquids by
heat, 170; absolute, 170, 174; apparent, 170; of mercury, absolute, 170;

apparent, 171; of water, 174; of gases by heat, 185; coefficient of, 186;

heat absorbed and work done during, 194

Extraordinary ray, 475; index, 475

Eye, 427; estimation of size and distance by, 428

Eye-lens or eye-piece; 431; negative or Huyghens, 456; j)ositive or Ramsden,

457

Farad, a unit: of electrical capacity, 256

Faraday, discovery of magnetic induction in all bodies, 237; explanation of

this, 237; experiment in electrical induction, 247; on force in electrified

body, 249; theory of electrification, 256; theory illustrated, 263; explana-

tion of residual charge, 264; showed that discharge of jar can produce ef-

33
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fects of current, 274; nomenclature of electrolysis, 282; voltameter, 285J
division of ions, 286; tiieoryof electrolysis, 287; chemical theory of electro-

motive force, 293; electromagnetic rotations, 306; induced currents, 324;

effect of medium on luminous discharge, 350; electromagnetic rotation of

plane of polarization, 493

Favre and Silbermann, studied heat of chemical combination, 202; verified con-

nection of electromotive force and heat units, 286; value of heat equivalent,

292

Ferromagnet. See Paramagnet, 237

Field of force, 27 ; strength of, 27

Filament, in a fluid, 129

Films, studied by Plateau, 98; interference of light from, 441

Fizeau, introduced condenser in connection with induction coil, 329; deter-

mined velocity of light, 433; velocity of light in a moving medium, 435
Flexure, elasticity of, 118

Floating bodies, 125

Flow of heat, 162; across a wall, 162; proportional to rate of fall, of tempera-

ture, 163; along a bar, 165

Fluid, body immersed in a, 125; body floating on a, 125

Fluids, distinction between solids and, 119; mobile, viscous, 119; perfect, 120

Fluids, motions of. See Motions of a fluid, 128

Fluorescence, 472

Fpcal line, 425

Focus, of spherical mirror, 413; real, conjugate, 413; principal, 414; virtual, 414

Force, 26; unit of, 26; field of, line of, tube of, 27; defined by potential, 34,

within spherical shell, 38; outside sphere, 41; just outside a spherical shell,

42; just outside a flat disk, 42; moment of, 43 <

Force, capillary, law of, 90

Force, electrical, in charged conductor, 249; law of, 249; screen from, 253;

just outside an electrified conductor, 255

Force, magnetic, law of, 224; due to Ijar magnet, 230; within a. magnet, 238;

between magnet and current element, 297, 298; between magnet and long

straight current, 299; due to magnetic shell, 304

Forces, composition and resolution of, 29; resultant of parallel, 43; central, 60

Forces, determining structure of bodies,- 87; molecular, 87, 108; of cohesion,

87; of adhesion, 87

Foucault, his pendulum, 52; determined velocity of light, 434; -his prism, 482

Fourier, his theorem, 25

Franklin, complete discharge of electrified body, 248; experiment with Leyden

jar, 263; identity of lightning and electrical discharge, 350

Fraunhofer, lines in solar spectrum, 458

Freezing point, change of, with pressure, etc., 177
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Fresnel, interferencfe of light from two similar sources, 439; his rhomb, 489;

explanation of rotation of plane of polarization by quartz, 491

Friction, laws of, 88 ; coefficient of, 88 ; theory of, 89-

Fusion, 176; heat equivalent of, 178; energy necessary for, 179; determination,

of heat equivalent of, 179

Galileo, the heliocentric theory, 68; measurement of gravity, 70; path of pro-

jectiles, 81; weight of atmosphere, 123

Galvani, discovered physiological effects of electrical current, 272

Galvanometer, 316; Schweigger's multiplier, 316; sine, 317; tangent, 318

Gas, definition of, 180

Gases, 85; absoirption of, 104; diffusion of, 107; elasticity of, no; liquefaction

of, by pressure, 142, 184; departure of, from Boyle's law, 185; coefficient

of expansion of, 186; pressure of saturated, 186

Gases, kinetic theory of. See Kinetic theory of gases, l88

Gauss, theory of capillarity, 91

Gay-Lussac, law of expansion of gases by heat, 185

Geissler tubes, 351

Gilbert, showed Earth to be a magnet, 233

Graham, his osmometer, 107; method of dialysis, 107

Grating, diffraction, 446; element of, 447; pure spectrum produced by, 447; nor-

mal and oblique incidence, 447; with irregular openings, 450; wave lengths

measured by, 450; Rowland's curved, 452

Gravitation, attraction of, 67

Gravity, centre of, 45

Gravity^ measurement of, 6g; value of, 70

Grotthus, theory of electrolysis, 287

Grove, his gas battery, 291

Grove's cell, 292

Gyration, radius of, 56

Gyroscope, 53

Hall, defleAion of a current in a conductor, 315

Halley, theory of gravitation, 68

' Hamilton, prediction of conical refraction, 490

Harmonic tones of pipe, 373

Harris, absolute electrometer, 265

Heat, effects of, 143; production of, 144; nature of , 144; a form of energy, 145;

unit of, 151; mechanical unit of, 151; mechanical equivalent of, 158; Joule's

determination of, 158; Rowland's, 159; transfer of, 161; convection of,

i6l; internal, of Earth, a source of energy, 221; developed b;)f the electri-

cal current, 273, 275; generated by absorption of radiant energy, 463
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Heat, conduction of. See Flow of, 162

Heat, atomic, 175

Helmholtz, vortices, 135 ; theory, of solar energy, 221 ; law of counter electro-

motive force, 280; theory of capillary electrometer, 295; resonators, 382;

vowel sounds, 383; 'theory of beats, 385; interaction of ether and molecules

of bodies, 473

Herschel, study of spectrum, 460

Him. work done by animals, 219

Holtz, electrical machine, 270

Hooke, theory of gravitation, 68

Hopkinson, relation between index of refraction and specific inductive ca-

pacity 496

Horizontal intensity of Earth's magnetism, 233; measurement of, by standard

magnet, 234; absolute, 235

Humidity, absolute, 202; relative, 204

Huyghens, theorems of, on motion in a circle, 68; views of, respecting gravita-

tion, 68; principle of wave propagation, 356

Hydrometer, 127

Hydrostatic balance, 125

Hydrostatic press, I2I

Hygrometer, AUuard's, 203

Hygrometry, 262

Ice, density, of, 177; melting point of, used as standard, 176

Iceland spar, 474; wave surface in, 476

Images, formed by small apertures, 402; virtual, 409; by successive reflection,

410; by mirrors, 419; by lenses, 421; geometrical construction of, 422

Impenetrability, 4 ,

Impulse, 26

Incidence, angle of, 406

Inclined plane, 47

Induced magnetization, coefficient of, 239

Induction coil, 328; condenser connected with, 329

Induction,, electrical, 247

Induction, magnetic, 223, 237; definition of, 239
'

Induction of currents, 321

Inertia, 4, 30, centre of, 44; moment of, 56

Insulatoi, electrical, 247

Interference of light, cause of propagation in straight lines, 397; from two simi-

lar sources, 436, experimental realization of, 439; from thin films, 441

Iniernode, 362 <

Intel vais, 368
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Ions, 282; electro-positive and electro-negative, 286; arrangement of, by Fara-

day, 286; by Berzelius, 287; wandering of)the, 288

Isothermal line, 193

Isotropic bodies, 108

JAMIN, drops in capillary tubes, 102

Jolly, determination of Earth's density, 80

Joule, equivalence of heat and energy, 145, 205; mechanical equivalent of heat,

158; expansion of gas without work, 188; limit of magnetization, 245; law

Of heat developed by electrical current, 279; electromotiv^e force in heat

units, 286 ; development of heat in electrolysis, 288

Jurin, law of capillary action, 99 y

Kaleidoscope, 410

Kater, his pendulum, 75

Kepler, laws of planetary motion, 67

Kerr^ optical effect of strain in dielectric, 263; rotation of plane of polarization

by reflection from magnet, 495

Ketteler, interaction of ether and molecules of bodies, 473

Kinematics, 11

Kinetics, 11

Kinetic theory of gases, 188

Kirchhoff, laws of electrical currents, 331; spectrum analysis, 460

Kohlrausch, value of electro-chemical equivalent, 292

K6nig, A., modification of surface tension by electrical currents, 295

Konig, R., manometric capsule-, 353; pitch of tuning-forks made by, 370;

boxes of his tuning-forks, 378; quality as dependent on change of phase,

381; investigation of beats, 385

Kundt, experiment to measure velocity of sound, 394; anomalous dispersion,

472

Lang, counter electromotive force of electric arc, 348

Langley, his bolometer, 279; wave lengths in lunar radiations, 452

Laplace, theory of capillarity, 91

Lavoisier, measurement of animal heat, 218

Least time, principle of, 401

Length, unit of, 4; measurements of, 5

Lenses, 417; formula for, 417; forms of, 418; focal length, of, 418; images

formed by, 421, optical centre of, 421; thick, 423; of large aperture, 423;

aplanatic combinations of, 427; achromatic combinations of, 455

Lenz, law of induced currents, 325
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Le Roux, experiments in thermo-electricity, 342; electrical convection of lieat

in lead, 347

Lever, 46

Leyden jar, capacity of, 261; dissected, 263; volume changes in, 263; residual

charge of, 264

Light, agent of vision, 396; theories of, 396; propagated in straight lines, 397;

principle of least time, 401: reflection of, 404; refraction of, 405; ray of,

beam of, pencil of> 422 ,

Light, velocity of, determined from eclipses of Jupiter's satellites, 432; from

aberration of fixed stars, 432; by Fizeau, 433; by Foucault, 434; by Michel-

son, 434; in moving medium, 435

Light, electromagnetic theory of, 495

Lightning, an electrical discharge, 350

Lines of magnetic force, positive direction of, 304; measure of strength of field

in, 309; relation of, to moving magnetic shell or current, 309

Lippmann, electrical effects on capillary surface, 294; capillary electrometer,

2g6; production of current by modification of capillary surface, 296

Liquefaction, 184; of gases, by pressure, 184

Liquids, 85; modulus of elasticity of, ii2-

Lissajou, optical method of comppunding vibrations, 384

^Loudness of sound, 365

Machine, 48; efficiency of, 48; electrical, 268; dynamo- and magneto-, 328

Magnet, natural, 223; bar, relations of, 228

Magnetic elements of Earth, 233

Magnetic force. See Force, magnetic, 224

Magnetic inductive capacity, 239

Magnetic shell, 231; strength of, 231; potential due to, 232; equivalence of, to

closed current,,300

Magnetic system of units, basis of, 226 ,

Magnetism, fundamental facts of, 223; distribution of, in magnet, 227; deter-

mination of, 228; theories of, 244; Ampere's theory of, 315

Magnetization, intensity of, 226

Magneto-machine, 328

Magnifying glass, 430

Magnifying power, 429

Manometer, 140

Manometric capsule, 353

Mariotte, study of. expansion of gases, no
Maskelyne, determination of Earth's density, 79

Mass, 11; unit of, 9

Masses, comparison of, g
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Matter, i; constitution of, 84

Matthiessen, expansion of water, 174
,

Mayer, views concerning work done by animals, 219

Maxwell, proposed unit of time, 83; coefficient of viscosity of a gas, 89; defini-

tion of magnetic induction, 239; theory of electrification, 256; explanation

of residual charge, 264; relation between specific' inductive capacity and

index of refraction, 264, 495 ; suggested test of Weber's theory of diamag-

netism, 315; measurement of w, 337; force on magnet due to moving elec-

trical charge, 338; electromagnetic theory of light, 397, 495

Mechanical powers, 46

Melloni, use of thermopile, 341

Melting point of ice, 176; of alloys, 176; change of, with pressure, 177

Mercury, expansion of, by heat, 170, 171

Metacentre, 125

Michelson, determined velocity of light, 434

Michelson and Morley, velocity of light in moving medium, 435

Micrometer screw, 6

Microscope, simple, 430; compound, 430

Mirrors, plane, 409; spherical, 410; images formed by, 419; of large aperture,

423; not spherical, 424

Modulus of elasticity. See Elasticity, no; Young's, 115

Molecular action, radius of, 90 ,

Molecule, 84; structure of, 87; kinetic energy of, proportional to temperature,

191; mean velocity of, 193

Moment, of force, 43; of momentum, 43; of couple, 44

Moment of inertia,*56; of rod, 57; of plate, 58; of parallelepiped, 59; experi-

mentally determined, 60

Moment of torsion, ii6; determination of, 117

Moment, magnetic, 226; changes in, 243; depends on temperature, 244; on

mechanical disturbance, 244

Momentum, 14; conservation of, 29; moment of, 43

Motion, 12; absolute angular, 12; simple harmonic, 18; Newton's laws of, 27;

in a circle, 61; in an ellipse, 64

Motions, composition and resolution of, 16; of simple harmonic, 22; of a fluid,

128; optical method of compounding, 384

MuUer, J., limit of magnetization, 245

Newton, laws of motion, 27; central forces, 61; law of mass attraction, 68;

quantity of liquid flowing through orifice, 134; theory of light, 396; inter-

ference of Jight from films, 442; composition of white light, 453; chromatic

aberration, 455;/,law of cooling, 470

Nichols, study of radiations, 471
,
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Nicholson and Carlisle, decomposition of water by electrical current, 273

Nicol, prism, 482 '

Node, 362

Noise, 365

Objective, 431

Ocean currents, energy of, 218

Oersted, his piezometer, 112; relation between magnetism and electricity, 273

Ohm, law of electrical current, 276, 277

Ohmj a unit of electrical resistance, 330; various values of, 330; determination

of. 330

Optic angle, 429; axis of crystal, 474, 489

Optics, 396

Ordinary ray, 475 ; index, 475

Organ pipe, 371; fundamental of, 373; harmonics of, 373; mouthpiece of, 373;

reeds used with, 373

Osmometer, Graham's, 107

Osmosis, 106

Overtones, of pipe, 373

Parallelogram, of motions, etc., 16; offerees, 29

Particle, I2

Pascal, pressure in liquid, 120; pressure modified by gravity, 121; barometer,

123

Path, 12

Peltier, heating of junctions by passage of electrical current, 273 ; effect, 274, 340

Pencil of light, 422

Pendulum, Foucault's, 52; simple, 70; formula for, 71; physical, 72; Borda's,

74; Kater's, 75

Penumbra, 402

Period, of a simple harmonic motion, 18; of a wave, 23

Permeability, magnetic, 239

Pfeffer, study of osmosis, lo^

Phase, of a simple harmonic motion, 19

Phonograph, 378 i

Phosphorescence, 472

Photometer, Rumford's, Foucault's, Bunsen's, 465

Photometry, 464

Piezometer, Oersted's, 112; Regnault's, 113

Pitch of tones, 365; methods of determining, 365; standard, 370
Plants, secondary cell of, 292 1

Plateau, experiments of, in capillarity, 97
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Plates, rise of liquid, between, 100; transverse vibrations of, 376

Poggendorff, explanation of gyroscope, 55

Poisson, correction for use of piezometer, 113; theory of magnetism, 244
Polariscope, 481, 482

Polarization, of an electrolyte, 287; of cells, 2gi

Polarization of light, by double refraction, 476; by reflection, 4B0; plane of,

480; by refraction, 480; by reflection from fine particles, 481; elliptic and

circular, 486; circular by reflection, 489; rotation of plane of, by quartz,

491; by liquids, 493 ; in rnagnetic field, 493

Polarized light, 478; explanation of, 478J effects of plates of doubly refracting

crystals on, 483, 486, 488, 489, 491

Polarizer, 481

Polarizing angle, 480

Pole, magnetic, 224, 228 ; unit magnetic, 226

Poles, of a voltaic cell, 290

Porous body, 103

Potential, difference of, 34; absolute, 35)37; within spherical shell, 38; outside

sphere, 39.

Potential, electrical, in a closed conductor, 249, 252; of a conductor, 252; zero,.,

positive, and negative, 253; of a system of conductors, 261; difference of,

measured, 267

Potential, magnetic, due to bar magnet, 228; due to magnetic shell, 232; of a

closed circuit is multiply-valued, 306; illustrated by Faraday, 306

Potentiometer, Clark's, 334

Pressure, 108, 109; in a fluid, 120; modified by outside forces, I2t; surfaces of

equal, 121 ; diminished on walls containing moving liquid column, 134

Principal plane of crystal, 475

Prism, 407

Projectiles, path of, 81; movement of, in circle, 82

Properties of matter, 4

Pulley, 46

Pump, 132; air, 137; compressing, 140

Quality of tones, 365, 380; dependent upon harmonic tones, 380; upoif change

of phase, 381

Quarter wave plates, 488 ,

Quartz, effects of plates of, in polarized light, 491 ; imitation of, 492

Quincke, change in volume of dielectric, 263; electrical endosmose, 28S; move-

ments of electrolyte, 288; theory of electrolysis, 289

1

Radiant energy, effects of, 462; transmission and absorption of, 466; emission

of, 468 ; origin of, 469
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Radiation, 167; intensity of, as dependent on distance, 463; on angle of in-

cidence, 464; kind of, as dependent on temperature, 470

Radicals, chemical, 85

Radiometer, 192'

Rainbow,, 457; secondary, 458

Ratio between electrostatic and electromagnetic units, 336; a velocity, 336 ^

physical significance of, 337, 338

Ray of light, 422

Rayleigh, electromotive force of Clark's cell, 293

Reeds, iti organ pipes, 373; lips used as, 374; vocal chords as, 374

Reflection, of waves, 362; law of, 363; of. light, law of, 404; total, 408; of

spherical waves, 424; selective. 467; polarization of light by, 480

Refraction of light, law of, 405; angle of, 406; dependent on wave length, 409;

at spherical surfaces, 415; polarization of light by, 480; conical, 490

Regelation, 177

Regnault, his piezometer, 113; expansion of mercury, 170; extension of Du-

long and Petit's law, 176; modification of Dalton's law, 182; modification

of Gay-Lussac's law, 185; pressure of water vapor, 186; total beat of

steam, 201

Resistance, electrical, 276, 329; depends on circuit, 276; of homogeneous cyl-

inder, 278; specific, 278; varies with temperature, 279; i(nits of, 329; boxes,

331; measurement of, 332; of a divided circuit, 333; used to measure tem-

perature, 149.

Resonator, 382

Reusch, artificial quartzes, 492

Reuss, electrical endosmose, 288

Rider, hot-air engine, 216

Rigidity, 114; modulus of, 114

Rods, longitudinal vibrations of, 374; transverse vibrations of, 376

Roemer, determination of velocity of light, 432

Rotation of plane of polarization by quartz, 491; right-handed and left-handed,

492; by liquids, 493; in magnetic field, 493; explanation of, 494; by reflec-

tion from magnet, 495

Rotational coefficient. Hall's, 316

Rowland, mechanical equivalent of heat, 159, 205; magnetic permeability, 239;

force on magnet due to moving electrical charge, 337; measurement of v,

'338; photographs of solar spectrum, 452; curved grating, 452

"Ruhmkorff's coil, 328

Rumford, relation of heat and energy, 145; views concerning work done by

animals, 219

Saccharimeter, 493

Saturation of a magnet, 243 '
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Savart, his toothed wheel, 365

Scales, musical, 368; transposition of, 369; tempered, 370

Schonbein, chemical theory of electromotive force, 293

Schweigger, his multiplier, 316

Screens, diffraction effects at, 445

Screw, 48

Seebeck, thermo-electric currents, 340; thermo-electric series, 341

Self-induction, 325

Set, 118

Shadows, optical, 402

Shear, 108, 113; amount of, 114; axis of, 114

Shearing stress, 108; strain, 109

Shunt circuit, 334

Siphon, 131

Siren, determination of number of vibrations by 366

Smee's cell, 291

Snell, law of refraction, 406

Solenoid, 314

Solidification, 176

Solids, 85; stAacture of, 86; crystalline, amorphous, 86; movements of, due to

capillarity, 102; distinction between fluids and, 119; soft, hard, 119

Solubility, 104

Solution, 103

Sound, 353; origin of, 353; propagation of, 354; theoretical velocity of, 390;

velocity of, in air, 392; measurements, 394

Sounding boards, 378

Specific gravity, 125; determination of, for solids, 125; for liquids, 126; for

gases, 127; correction for temperature, 174

Specific gravity bottle, 126

Specific heat, 152; mean, 153; varies with temperature, 175; with change of

state, 175

Specific heat of gases, 194; at constant volume, 194; at constant pressure,

194; ratio of these, 195; determination of, at constant pressure, 195; rela-

tion to elasticities, 198

Specific inductive capacity. See Capacity, specific inductive, 257

Spectrometer, 451; method of using, 451

Spectroscope, 459

Spectrum, pure, 447; produced by diffraction grating, 447; of first order, etc.,

447; formed by prism, 453; solar, 453, 458; dark lines in, 458; study of,

459; of solids and liquids, 459; of gases, 460, explanation of, of a gas, 469;

characteristics of, 471; of gases which undergo dissociation, 471

Spectrum analysis, 459
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Spheroidal state, 183

Spherometer, 8

Spottiswoode and Moulton, electrical discharge in high vacua, 35a

Sprengel, his air-pump, 139; theory of, 134

Statics, II

Steam, total heat of, 201

Stirling's hot-air engine, 216

Stokes, study of fluorescence, 472

Strain, 108

Stress, 29; in medium, 108

Substances, simple, compound, 85

Sun, energy of, 221

Surface density of electrification, 251

Surface energy of liquids, 93

Surface tension of liquids, 91; relations to surface energy, 93; modified by
electrical effects, 294

Tait, experiments in thermo-electricity, 342; thermo-electric formula, 345

Telephonic transmitters and receivers, 327

Telescope, 430, 431; magnifying power of, 431

Temperament of musical scale, 370 .

Temperature, 146; scales of, 147; change of, during solidification, 178; critical,

183, 184; absolute zero of, 191; absolute, 212; movable equilibrium of,

468; radiation of heat dependent on, 470

Tension, io8; elasticity of, 114

Thermodynamics, laws of, 205

Thermo-electric currents, 340; hovy produced, 342; reversal of, 342

Thermo-electric diagram, 342

Thermo-electric element, 341

Thermo-electric power, 343

Thermo-electrically positive and negative, 341

Thermometer, 146; construction of, 146; air, X49; limits in range of, 149;

weight, 149, 172; registering, 150

Thermopile, 341 ; used to measure temperature, 149

Thomson, vortices, 135; absolute scale of temperature, 214; theory of solar

energy, 221; treatment of magnetic induction, 238; magnetic permeability,

239; absolute electrometer, 265; quadrant electrometer, 267; law of coun-

ter electromotive force, 280; contact theory of electromotive force, 293;

measurement of v, 336; thermo-electric currents in non-homogeneous cir-

cuits, 342; thermo-electric power a function of temperature, 345; the

Thomson effect, 347; electromotive force required to force spark through

air, 349
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Thomson efifect, 345

Tides, energy of, 220

Time, unit of, 8; measurements of, 8, 9; Maxwell's proposed unit of, 83

Tones, musical, 365; differences in, 365; determination of number of vibra-

tions in, 365; wliole and semi-, 369; fundamental, 373; analysis of compl.-x,

382; resultant, 387

Tonic, 369

Torricelli, barometer, 122; experiment of, 123; theorem for velocity of efflux,

131; experiments to prove, 133

Torsion, amount pf, 116; moment of, 116.

Torsion balance, 116, 249

Transmission of radiations, 466

Triad, major, 368; minor, 368

Tubes, rise of liquid in capillary, 99; drops in capillary, lOl

Tuning-fork, 376; sounding-box of, 378

Umbra, 402

Units, fundamental and derived, 4; dimensions of, 10; systems of, 10

VACUlfM TUBE, electrical discharge in, 350

Vapor, 180; saturated, 180; pressure of, 181; production of, in limited space,

183; departure of, from Boyle's law, 185; pressure of saturated, 186; pres-

sure of water-, 186; in air, determination of, 202; pressure of, 202

Vaporization, energy necessary for, 200; heat equivalent of, 200

Velocity, 13; angular, 48; constant in a circle, 61

Velocity of efflux of a liquid, 129; into a vacuum, 133

Velocity, mean, of molecules of gas, 193

Velocities, composition and resolution of, 16; of angular, 49

Vena contracta, 134

Ventral segment, 362

Verdet, electromagnetic rotation of plane of polarization, 493

Vernier, 5

Vertex of spherical mirror, 411

Vibrations of sounding bodies, 371; modes of exciting in tubes, 373; longi-

tudinal, of rods, 374; of cords, 374; transverse, of cords, 375; pf rods, 376;

of plates, 376; communication of,, 377J of a membrane, 378; optical

metliod of studying, 383; velocity of propagation of, 390

Vibrations,, light, transverse to ray, 478; relation to plane of polarization, 480;

elliptical and circular, 486

Viscosity, 88; of solids, 119
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Vision, ancient theory of, 396; Aristotle's view of, 396
Visual angle, 429

Vocal chords, 374

Volt, a unit of electromotive force, 326

Volta, change in volume of Leyden jar, 263; electrophorus, 269; contact differ-

ence of potential, 272; voltaic battery, 273; heating by current, 273; con-

tact theory of electromotive force, 293

Voltaic cells, 290; polarization of, 291; theories of electromotive force of, 293;

arrangements of, 335

Voltaic cells, kinds of : Grove's gas battery, 290; Smee's, 291; Daniell's, 291;

Grove's, 292; Plantfe's secondary, 292; Clark's, 293

Voltameter, weight, 285; volume, 285

Volume, change of, with change of state, 177

Vortex, in perfect fluid, 135; line, 135; filament, 135; properties of a, 136;

strength of, 136; illustrations of, 137

Vowel sounds, dependent on quality, 383

Water, specific heat of, 151; maximum density of, 161, 174; expansion of, by

heat, 174; on solidification, 177,

Water-power, energy of, 218

Wave, simple, 23; compound, 24, 359; propagation of, 354; length, 355; pro-

gressive, 355

Wave, sound, 356-; mode of propagation of, 356; graphic representation' of, 356;

displacement in, 358; velocity of vibration in, 359; stationary, 361; reflec-

tion of, 362; in sounding bodies, 371

Wave, light, surface of, 397; relation of, to the direction of propagation, 401;

emergent from prism, 407, 408; measurement of length of, 440, 450; values

of lengths of, 452; surface of, in uniaxial crystals, 476; in biaxial crystals,

490

Weber, thSory of magnetism, 244; theory of diamagnetism, 315; his electro-

dynamometer, 321

Weber and Kohlrausch, measurement of v, 336

Wedge, 48

Weighing, methods of, 78

Weight of a body, 70

Wheatstone, his bridge, 331

Wheel and axle, 47

Wiedemann, electrical endosmose, 288

Wind power, energy of, 218

WoUaston, dark lines in solar spectrum, 458

Work, 31; and energy, equivalence of, 32; unit of, 32
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Wren, theory of gravitation, 68

Wright, connection of electromotive force and heat of chemical combination,

286

Young, theory of capillarity,. gi; modulus of elasticity, 115; optical method of

studying vibrations, 383; interference of light from two similar sources,

439
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